
TRANSPORTATION SCIENCE
Vol. 00, No. 0, Xxxxx 0000, pp. 000–000
issn 0041-1655 |eissn 1526-5447 |00 |0000 |0001

INFORMS
doi 10.1287/xxxx.0000.0000

c⃝ 0000 INFORMS

Randomized local search
for real-life inventory routing

Thierry Benoist, Frédéric Gardi, Antoine Jeanjean
Bouygues e-lab, 40 rue Washington, 75008 Paris,

{tbenoist,fgardi,ajeanjean}@bouygues.com

Bertrand Estellon
Laboratoire d’Informatique Fondamentale - CNRS UMR 6166,
Faculté des Sciences de Luminy - Université Aix-Marseille II,
163 avenue de Luminy - case 901, 13288 Marseille cedex 9,

bertrand.estellon@lif.univ-mrs.fr

In this paper, a real-life routing and scheduling problem is addressed. The problem, which consists in opti-
mizing the distribution of fluids by tank trucks in the long run, is a generalization of the vehicle routing
problem with vendor managed inventory replenishment. The particularity of this problem is that the vendor
monitors the customers’ inventories, deciding when and how much each inventory should be replenished by
routing trucks. Thus, the objective of the vendor is to minimize the logistic cost of the inventory replen-
ishment for all customers in the long run. Having detailed the modeling of the real-life problematic, the
practical short-term planning approach adopted for optimizing the long-term objective is presented. Then,
a pure and direct local-search heuristic is described for solving the short-term planning problem, using a
surrogate objective function based on long-term lower bounds. The design and engineering of this algorithm,
which is central to the approach, follows the three-layers methodology for “high-performance local search”
recently introduced by some of the authors. An extensive computational study shows that our solution is
effective, efficient and robust, providing long-term savings exceeding 20% on average compared to solutions
built by expert planners or even a classical urgency-based constructive algorithm. Confirming the promised
long-term savings in operations, the resulting decision support system is going to be deployed worldwide.

Key words : logistics; inventory routing; decision support system; stochastic local search; high-performance
algorithm engineering

History :

The problem addressed in this paper is a real-life inventory routing problem (IRP) occurring in
one of the world’s leading company in its field. In order to familiarize the reader with the whole
problematic, an informal description is given before presenting our contributions.

Fluid products are produced by the vendor’s plants and are consumed at customers’ sites. Both
plants and customers store the product in tanks. Reliable forecasts of production at plants are
known over a short-term horizon. On the customer side, two kinds of resupply are managed by the
vendor. The first one, called “forecasting-based resupply”, corresponds to clients for which reliable
consumption forecasts are available over a short-term horizon. The inventory of each customer
must be replenished by tank trucks so as to never fall under its safety level. The second one, called
“order-based resupply”, corresponds to customers which send orders to the vendor, specifying the
desired quantity and the time window in which the delivery must be done. Some customers can
ask for the both types of resupply management: their inventory is replenished by the vendor using
monitoring and forecasting, but they keep the possibility of ordering (to deal with an unexpected
increase of their consumption, for example). The constraints consisting in satisfying orders (no
missed orders) and in maintaining inventory levels above safety levels (no stock out) are defined
as soft, since the existence of an admissible solution is not ensured in real-life conditions.

The transportation is performed by vehicles composed of three kinds of heterogenous resources:
drivers, tractors, trailers. Each resource is assigned to a base. A vehicle is formed by associating
one driver, one tractor and one trailer. Some triplets of resources are not admissible (due to driving

1

Benoist et al.: Real-life inventory routing
2 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

licences, for example). The availability of each resource is defined through a set of time windows.
Each site (plant or customer) is accessible to a subset of resources (special skills or certifications
are required to work on certain sites). Thus, scheduling a shift consists in defining: a base, a triplet
of resources (driver, tractor, trailer), and a set of operations each one defined by a triplet (site,
date, quantity) corresponding to the pickups or deliveries performed along the tour. A shift must
start from the base to which are assigned the resources composing the vehicle and end by returning
to this base. The working and driving times of drivers are limited; as soon as a maximum duration
is reached, the driver must take a rest with a minimum duration (Department of Transportation
rules). In addition, the duration of a shift cannot exceed a maximal value depending on the driver.
The sites visited along the tour must be accessible to the resources composing the vehicle. A
resource can be used only during one of its availability time windows. The date of pickup/delivery
must be contained in one of the opening time windows of the visited site. Finally, the inventory
dynamics, which can be modeled by flow equations, must be respected at each time step, for each
site inventory and each trailer; in particular, the sum of quantities delivered to a customer (resp.
loaded at a plant) minus (resp. plus) the sum of quantities consumed by this customer (resp.
produced by this plant) over a time step must be smaller (resp. greater) than the capacity of its
storage (resp. zero). Note that here the duration of an operation does not depend on the delivered
or loaded quantity; this duration is fixed in function of the site where the operation is performed,
the resulting approximation being covered by the uncertainties lying on the traveled times.

In our case, reliable forecasts (for both plants and customers) are available over a 15-days horizon.
Thus, shifts are planned deterministically day after day with a rolling horizon of 15 days. It means
that each day, a distribution plan is built for the next 15 days, but only shifts starting at the
current day are fixed. The objective of the planning is to respect the soft constraints described
above over the long run (satisfying orders, maintaining safety levels). In practice, the situations
where these constraints cannot be met are extremely rare, because missed orders and stockouts
are unacceptable for customers (of course, safety levels must be finely tuned according to customer
consumptions). Then, the second objective is to minimize over the long term a logistic ratio defined
as the sum of the costs of shifts (which is composed of different terms related to the usage of
resources) divided by the sum of the quantities delivered to customers. In other words, this logistic
ratio corresponds to the cost per unit of delivered product.

Large-scale instances have to be tackled. A geographic area can contain up to 1500 customers,
50 sources, 50 bases, 100 drivers, 100 tractors, 100 trailers. All temporal data have to be managed
in continuous time, except for consumptions of customers (resp. productions of plants) which are
discretely represented. Concretely, all dates and durations are expressed in minutes (on the whole,
the short-term planning horizon counts 21600 minutes); the inventory dynamics for plants and
customers are computed with time steps of one hour (because forecasts are computed with this
accuracy). The execution time for computing a short-term planning is limited to 5 minutes on
standard computers.

1. Related works and contributions
Since the seminal work of Bell et al. (1983) on a real-life inventory routing problem, a vast literature
has emerged on the subject. In particular, a long series of papers was published by Campbell et al.
(1998, 2002), Campbell and Savelsbergh (2004a), Savelsbergh and Song (2007a,b, 2008), motivated
by a real-life problematic encountered in the gas industry. However, in many companies, inventory
routing is still done by hand or supported by basic softwares, with rules like: serve “emergency”
customers (that is, customers whose inventory is near to run out) using as many “full deliveries”
as possible (that is, deliveries with quantity equal to the trailer capacity or, if not possible, to the
customer tank capacity). For more references, the interested reader is referred to the recent papers
by Savelsbergh and Song (2007a, 2008), which give a comprehensive survey of the research done
on the IRP over the past 25 years.

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 3

1.1. Contributions to IRP modeling
The problem addressed here is very close to the one treated by operational planners. To our
acquaintance, such broad inventory routing problems have been rarely addressed in the operations
research literature. Indeed, many real-life features described here have not been treated in past
studies, allowing a more global and accurate optimization of the replenishment logistics. Some of
these features have been reported as important practical issues in the survey by Campbell et al.
(1998). First, our inventory routing model integrates both kinds of resupply: forecasting-based and
order-based. Besides, several subproblems related to the scheduling of shifts and the allocation of
resources to shifts become computationally hard in the present case. Another interesting feature,
enabling to go further in logistic optimization while making the problem harder, is what Savelsbergh
and Song (2007a, 2008) called “continuous moves”. The vehicles can arbitrarily load or deliver some
product along their routes, and loadings can be done at multiple plants. Moreover, when a driver
reaches its working or driving time limit, he can continue his route after a layover. This allows
to design shifts spanning several days and covering huge geographic areas. Finally, the expected
forecasts of consumption for customers and of production for plants are given for each hour on a
15-days horizon, allowing nonlinear consumptions/productions; here forecasts are assumed to be
reliable, inducing a deterministic optimization problem (contingencies on the customer consump-
tion are considered to be covered by the defined safety level). Customers (resp. plants) may have
different consumption (resp. production) profile, asking several deliveries (resp. pickups) per day or
only one per month. Note that one feature generally addressed in the IRP literature (e.g. Campbell
et al. 1998, 2002, Savelsbergh and Song 2007a, 2008) is not included in our IRP model: loading or
delivery times depending on the quantity. Indeed, fixed-time loadings and deliveries depending on
sites were judged sufficient to approximate reality (full loadings/deliveries are performed in almost
half an hour), because several other approximations making this detail negligible are done about
temporal aspects due to real-life uncertainties (in particular about traveled times). Nevertheless,
we shall see later that our solution could be modified to manage this feature without significantly
affecting its performance.

As mentioned by Campbell et al. (1998) and Campbell et al. (2002), the first difficulty arising in
modeling IRP is to define appropriate short-term objectives leading to good long-term solutions.
But how to define good long-term solutions? A popular and sensible objective, used by Campbell
et al. (1998, 2002), Savelsbergh and Song (2007a, 2008), is to maximize the volume per mile over
the long term, obtained by dividing the total quantity delivered to all customers by the total dis-
tance traveled. Instead of the sole traveled distance, we take into account the actual cost of the
routes, thanks to a precise modeling of the cost of each shift in function of its traveled distance, its
traveled time, its number of loadings, its number of deliveries, and its number of rests. The resulting
generalized objective is the minimization of the cost per unit of delivered product, called logistic
ratio throughout the paper. This was made possible by modeling the cost of a shift in function
of its traveled distance, its traveled time, its number of loadings, its number of deliveries, and its
number of rests. Then, our first contribution is to introduce a surrogate objective for short-term
optimization (here done over a 15-days horizon) ensuring long-term improvements. This surrogate
objective, which shall be detailed later in the paper, is based on lower bounds for the logistic
ratio (this extends observations made by Savelsbergh and Song (2007b) on performance measure-
ment). Computational experiments with real-life data show that significant gains are obtained in
the long run by optimizing this short-term surrogate objective, compared to a direct short-term
minimization of the logistic ratio.

1.2. Contributions to IRP resolution
To our knowledge, the sole papers describing practical solutions for similar problems are the ones
described by Campbell et al. (2002), Campbell and Savelsbergh (2004a), Savelsbergh and Song

Benoist et al.: Real-life inventory routing
4 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

(2007a, 2008). Before presenting our solution approach, we outline the ones implemented by Camp-
bell et al. (2002), Campbell and Savelsbergh (2004a) for solving the single-plant IRP, and by
Savelsbergh and Song (2007a, 2008) for solving the multiple-plant IRP.

The solution approaches described by Campbell et al. (2002) and Campbell and Savelsbergh
(2004a) are the same in essence; because integrating additional realistic constraints, the single-plant
IRP addressed by Campbell and Savelsbergh (2004a) is more complex than the one by Campbell
et al. (2002). The methodology developed by the authors is deterministic and proceeds in two
phases. In the first phase, it is decided which customers are visited in the next few days, and a
target amount of product to be delivered to these customers is set. In the second phase, vehicle
routes are determined taking into account vehicle capacities, customer delivery windows, drivers
restrictions, etc. The first phase is solved heuristically by integer programming techniques, whereas
the second phase is solved with specific insertion heuristics (Campbell and Savelsbergh 2004c),
as done for vehicle routing problems with time windows by Solomon (1987). In Campbell et al.
(2002), a planning is constructed on a rolling horizon by considering 5 days in full detail plus 4
weeks in aggregated form beyond this. Computational experiments are made on two instances with
50 customers and 87 customers respectively, with 4 vehicles as resources. The authors compare
their short-term solutions to the ones obtained by a greedy algorithm based on the rules of thumb
commonly used in practice (like the one cited at the beginning of this section). They obtain an
average gain of 8.2% for the volume per mile (running times are not reported). In Campbell and
Savelsbergh (2004a), the authors simulate the use of a rolling-horizon approach covering one month.
At each iteration of the rolling-horizon framework, they solve the first-phase integer program
on 3 days in full detail plus 1 week in aggregated form beyond this, and run the second-phase
insertion heuristic with the information from the solution of the integer program for the first two
days. Then, the resulting routes are fixed and the clock is moved forward two days in time. The
running time to perform one iteration is limited to 10 minutes (with a 366 MHz processor). The
authors compare their approach to a greedy algorithm similar to the one described in Campbell
et al. (2002). The benchmarks are composed of two instances with almost 100 customers and 50
customers respectively (the available resources are not detailed). The average gain over one month
is of 2.7% for the volume per mile, but a better utilization of ressources is observed (larger average
percentage of trailer capacity delivered on routes, shorter average length of shifts).

In Savelsbergh and Song (2007a, 2008), the authors develop two approaches for solving the
multiple-plant IRP. Many realistic features taken into account in Campbell and Savelsbergh (2004a)
are relaxed in the model addressed by the authors. In particular, simple resources are considered
(that is, a vehicle is reduced to a trailer) allowing an integer multi-commodity flow formulation of
the problem. The first approach (Savelsbergh and Song 2007a) is based on an insertion heuristic
which delivers customers ordered by urgency (that is, the time remaining before the first stockout)
while minimizing stockout and transportation costs. This approach is declined into three greedy
algorithms: a basic one (called BGH) where insertions are only performed at the end of shifts, a
enhanced one (EGH) where insertions can be performed at any point in the shift after the last
pickup, and a randomized enhanced one (RGH) where the EGH algorithm is embedded into a
greedy randomized adaptive search procedure (Feo and Resende 1995). Then, a postprocessing is
performed using linear programming for maximizing delivered quantities on the resulting shifts (in
order to maximize the volume per mile). The authors present computational results made on 20
benchmarks derived from an instance with 200 customers, 7 plants, 7 vehicles (with a 2.4 GHz
processor). On a 10-days horizon, the average improvement for stockout and transportation costs
from BGH to EGH (resp. from EGH to RGH) is of 15.2% (resp. 6.8%); the average running time
is about a few seconds for BGH and EGH, and about 12 minutes for RGH. The postprocessing
optimization is shown to increase the total delivered quantity by 2.8% on average on the same
benchmarks (with a running time lower than one second). Other experiments made on a rolling

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 5

horizon of 5 months (with 10 days planned, 5 days fixed) show that the delivery volume post
optimization helps to reduce costs of about 3% (using RGH as reference algorithm). The second
approach (Savelsbergh and Song 2008) consists in solving heuristically the integer multi-commodity
flow program (by using customized integer programming techniques). The authors present compu-
tational results made on 25 benchmarks derived from the instance with 200 customers used as basis
in Savelsbergh and Song (2007a). The average improvement over RGH for stockout and transporta-
tion costs is of 4.1%, whereas the average running time is greater than 31 hours (with a 900 MHz
processor). Since such computational requirements are too large for a practical use, the authors
use the integer program for exploring large neighborhoods in a local search scheme (see Estellon
et al. (2006, 2008) for an application of this technique to car sequencing problems). This consists
in re-optimizing the schedules of two vehicles in the planning by solving the integer program with
the other schedules fixed. In this way, all pairs of vehicles are re-optimized iteratively. The authors
report an average improvement over RGH of 3.1%, with an average running time lower than 3
minutes and an average number of improving iterations of 3. Unfortunately, no precise statistic is
given in Savelsbergh and Song (2007a, 2008) about the resulting volume per mile over a long term.

Our second contribution concerns the resolution of the short-term planning problem with the
surrogate objective. The short-term planning is built for 15 days in full details and only shifts
starting the first day are fixed before rolling the horizon. In this paper, a pure and direct local-search
heuristic is described for solving the short-term planning problem, whose design and engineering
follows the three-layers methodology recently formalized by Estellon et al. (2009) and successfully
implemented for solving other large-scale business optimization problems (car sequencing with
paint colors at Renault by Estellon et al. (2006, 2008), task scheduling with human resource
allocation at France Télécom by Estellon et al. (2009)). A local-search approach is outlined by
Lau et al. (2002) for solving an inventory routing problem with time windows, but their solution
remains based on a decomposition of the problem (distribution and then routing). We insist on the
fact that no decomposition is done here: the 15-days planning is directly optimized by local search.
An extensive computational study demonstrates that our solution is both effective, efficient and
robust, providing long-term savings exceeding 20% on average, compared to solutions computed
by expert planners or even a classical urgency-based constructive heuristic.

Following the methodology of Estellon et al. (2009), our local-search heuristic is designed accord-
ing to three layers. The first layer corresponds to the search strategy; here a first-improvement
descent heuristic with stochastic selection of transformations is employed (an initial solution is
computed using an urgency-based insertion heuristic). The second layer corresponds to the pool
of transformations which defines the neighborhood; here more than one hundred transformations
are defined on the whole, which can be grouped into a dozen of types (for operations: insertion,
deletion, ejection, move, swap; for shifts: insertion, deletion, rolling, move, swap, fusion, separa-
tion). Finally, the third layer, corresponding to the “engine” of the local search, consists of three
main procedures common to all transformations: evaluate (which evaluates the gain provided by
the transformation applied to the current solution), commit (which validates the transformation
by updating the current solution and the associated data structures), rollback (which clears all
the data structures used to evaluate the transformation). Since the duration of an operation does
not depend on the quantity loaded or delivered, the evaluation procedure is separated into two
routines: first the scheduling of shifts and then the assignment of volumes. These routines, whose
running time is critical for performance, relies on incremental algorithms supported by special data
structures for exploiting invariants of transformations. On average, our algorithm visits more than
10 million solutions in the search space during 5 minutes of running time, with a diversification rate
of almost 5% (that is, the number of committed transformations over the number of attempted
ones), which allows to reach quickly high-quality local optima.

Benoist et al.: Real-life inventory routing
6 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

An abstract of this work appears in Benoist et al. (2009). For an introduction to local search
techniques and their applications in combinatorial optimization, the reader is referred to the book
edited by Aarts and Lenstra (1997).

2. The inventory routing model
First are detailed the input and output data of the problem. Then, the constraints and objectives
of the model will be exposed.

2.1. Input data
The different units of measurement for quantity, time and distance can be chosen freely, but must
be consistent. For measuring quantities, weights are generally preferred to volumes in bulk logistics.

The time is represented as a continuous line with horizon T . In other words, any instant is
given by a point in the interval [0,T]. Thus, all dates defined in the model can be expressed
with the desired precision. In effect, we work with a value of T equal to 15 days and the time
unit is the minute. Due to physical restrictions, forecasts cannot be available continuously. Thus,
consumptions and productions are given discretely for time steps of size U , such that U ×H =T
with H the number of time steps over the horizon. In our case, the granularity adopted for U is
one hour. Except contrary mention, any interval of time (in particular time windows defined in
input) is such that the starting date is included and the ending date is excluded.

The size of the input data of the problem is essentially defined by the number of customers,
the number of plants, the number of bases, the number of drivers, the number of tractors, the
number of trailers, the number of orders, and the number of time steps for which are defined
consumptions/productions over the horizon.

2.1.1. Resources. Here are described the attributes for each kind of resources: drivers, trac-
tors, trailers. A driver resource can represent one driver or a pair of drivers, as encountered in
geographic areas like Canada for making very long trips. Then, a driver d is defined by: the base(d)
to which he is located, the set timeWindows(d) of availability time windows over the horizon,
the set tractors(d) of tractors matchable to the driver, the maximum amplitude maxAmplitude(d)
of each shift performed by the driver, the maximum driving duration maxDrivingDuration(d)
after which a layover is required (e.g. 11 hours in the USA), the maximum working duration
maxWorkingDuration(d) after which a layover is required (e.g. 14 hours in the USA), the minimum
duration minLayoverDuration(d) of any layover (e.g. 10 hours in the USA), the cost timeCost(d)
per unit of working time, the cost loadingCost(d) for each loading operation performed by the
driver, the cost deliveryCost(d) for each delivery operation performed by the driver, the cost
layoverCost(d) for each layover taken by the driver.

Note that if a driver represents in reality a pair of drivers, then the driving/working rules
must match what is allowed for this team. For example, a pair of drivers whose each one is sub-
ject to the 11/14/10 DOT rules could have maxDrivingDuration(d) =maxWorkingDuration(d) =
maxAmplitude(d) considering that the two drivers alternate the driving/working periods (the sec-
ond driver takes a rest during the duty of the first one, and vice versa). Note that in this case the
duration of the shift shall remain constrained by the parameter maxAmplitude(d).

Then, a tractor tr is defined by: the base(tr) to which it is located, the set timeWindows(tr)
of availability time windows, the set trailers(tr) of trailers matchable to the tractor, its
speed tractorSpeed(tr) (an integer between [0,9] used as index in the time matrix), the cost
distanceCost(tr) per unit of traveled distance. Finally, a trailer tl is defined by: the base(tl) to
which it is located, the set timeWindows(tl) of availability time windows, its capacity(tl) (that is,
the maximal quantity that can be loaded in the trailer and delivered to customers), the quantity
initialQuantity(tl) of product in the trailer at the beginning of the period.

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 7

2.1.2. Locations. A location on the map is either a base, a customer, or a plant. Any location
p has two x(p), y(p) coordinates to be located on the map. Bases are just locations to which are
assigned resources; they are used as starting and ending locations of the shifts. Any customer p has
the following attributes: capacity(p) which represents the size of its inventory (that is, the maximum
quantity that can be delivered to the customer), safetyLevel(p) corresponding to the quantity of
product which must be maintained in the inventory to avoid stockout costs, the initialQuantity(p)
of product in the tank of the customer at the beginning of the period, forecast(p,h) which gives
for each time step h the consumption of the customer, the set timeWindows(p) of availability time
windows, the set allowedDrivers(p) of drivers which are allowed to enter to this customer (some
drivers may be forbidden due to inadequate skills), the set allowedTractors(p) of tractors which
are allowed to enter to this customer (some tractors may be forbidden due to their large size), the
set allowedTrailers(p) of trailers which are allowed to enter to this customer (some trailers may
be forbidden due to inadequate equipments), the fixed duration setupTime(p) taken to perform a
delivery to this customer (here set to the average delivery time), the cost missedOrderCost(p) paid
for each missed order, the cost runoutCost(p) per time step spent in stockout, the list orders(p) of
orders asked by the customer, the flag callIn(p) which is true if unsolicited deliveries are forbidden
for this customer (that is, this one works in pure order-based resupply mode), and finally the flag
firstAfterSource(p) which is true if this customer must be delivered just after a loading operation
in the shift (used to check the purity of the product before the delivery).

An order r is characterized by: the quantity(r) asked by the customer and the earliestTime(r)
and latestTime(r) which define the time window for delivering it (more precisely, the starting
date of the delivery operation must be contained into this interval). Note that if callIn(p) is true,
the attributes capacity(p), safetyLevel(p), initialQuantity(p), forecast(p,h) and runoutCost(p) are
not relevant for the customer p. Plants are modeled similarly, without attributes runoutCost(p),
orders(p), callIn(p), firstAfterSource(p). Note that consumptions of customers (resp. productions
of plants) are represented with positive (resp. negative) values.

Finally, some distance and time matrices are provided: distMatrix (p, q) gives the distance between
locations p and q, timeMatrix (p, q, r) corresponds to the traveling time from p to q using a tractor
tr with tractorSpeed(tr) index equal to r. Both matrices are not necessarily symmetric, but are
assumed to satisfy the triangular inequality. Some checking operations must be performed at the
start and the end of any shift, as well as before and after any layover; these fixed durations are
respectively denoted by preTripTime and postTripTime.

2.2. Output data
A solution consists in a set of shifts. A shift s is defined by: its driver(s), its tractor(s), its
trailer(s), its base(s), its starting date start(s) from the base, its ending date end(s) to the base,
the quantity startTrailerQuantity(s) of product in the trailer at the beginning of the shift, the
quantity endTrailerQuantity(s) of product at the end of the shift, and the chronological-ordered
list operations(s) of performed operations.

Then, an operation o is defined by: the shift shift(o) to which the operation o belongs, the
site point(o) where the operation takes place, the order r satisfied by the operation (if any),
the quantity(o) delivered or loaded (positive for delivery, negative for loading), its starting date
arrival(o), its ending date departure(o), the list layoversBefore(o) of layovers taken since the pre-
vious operation (in practice, several layovers are rarely set between two operations). Note that
the list operations(s) contains a final fake operation (with null quantity) used for storing layovers
between the last site visited and the base. A layover l, which represents a resting interval for the
driver between two locations, is defined by: its starting date start(l), its ending date end(l), the
driving time drivingBefore(l) from the previous location or the previous layover (in case of multiple
layovers between two locations) in the shift. The value drivingBefore(l) = 0 means that the layover
is taken at the previous location.

Benoist et al.: Real-life inventory routing
8 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

The inventory levels (for customers, plants, trailers) can be computed from the quantities deliv-
ered or loaded in shifts. We denote by tankQuantity(p,h) the quantity of product in the tank of site
p at time step h, and by trailerQuantity(tl, o) the quantity of product in the trailer tl at the end
of operation o. If the operation o is the last of the shift s, we must have endTrailerQuantity(s) =
trailerQuantity(tl, o). Note that all input and output data related to volumes are integers.

2.3. Constraints
As noted previously, the present IRP can be decomposed into two subproblems: routing/scheduling
shifts and assigning volumes.

2.3.1. Routing constraints. Here are listed the constraints bearing on shifts, called routing
constraints. The three resources (driver, tractor, trailer) assigned to the shift must be located at
the base of the shift. The tractor assigned to the shift must be compatible with the driver of the
shift, that is, it must belong to the list tractors(d) which can be driven by this driver. In the
same way, the trailer of the shift must be compatible with the tractor of the shift. The interval
[start(s), end(s)[induced by any shift s must be contained into an availability time window for
each resource assigned to s. Finally, the shifts performed by a resource cannot overlap in time (that
is, the time intervals induced by the shifts are pairwise disjoint).

In addition, there are constraints specific to drivers. For each driver d, two consecutive shifts
assigned to d must be separated by at most minLayoverDuration(d) and the duration of a
shift cannot exceed maxAmplitude(d). For any driver d, cumulatedDrivingTime(d, t) at time t
corresponds to the driving time cumulated since the end of the last layover or the start of
the shift. In the same way, cumulatedWorkingTime(d, t) corresponds to the cumulated work-
ing time since the end of the last layover or the start of the shift; it includes the driving
time, the time to perform operations at each site, the preTripTime after each layover (or start
from the base), and the postTripTime before each layover (or return to the base). At any
time t of a shift, cumulatedDrivingTime(d, t) (resp. cumulatedWorkingTime(d)) cannot exceed
maxDrivingDuration(d) (resp. maxWorkingDuration(d)). In other words, one layover must be set
once one of the two maximal durations is reached. The duration of any layover must be greater
than minLayoverDuration(d).

c2

delivery layoverstart(s)

setupTime(p0)preTripTime preTripTimepostTripTimesetupTime(c0)

departure(p0)

postTripTime

timeMatrix (c1, c2)

waiting

arrival(c2)

c0

c1 c2

timeMatrix (b0, c0)b0

b0

p0

p0
c1

b0

end(s)departure(c1)

arrival(c1)

loading

c0

Figure 1 Two views of the shift s= (b0, c0, p0, c1, c2, b0): the route and the schedule.

Any shift starts from a base and must return to this base (see Figure 1 for two graphical views
of a shift). The departure (resp. arrival) of the vehicle from (resp. to) the base must be preceded
(resp. followed) by the preTripTime (resp. postTripTime) checking. Then, the arrival at a location
in the shift requires traveling from the previous location to this one; in other words, the time spent
between two consecutive locations p and q is greater than timeMatrix (p, q, r), with r the index
of speed of the tractor assigned to the shift. Note that the time spent between two consecutive

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 9

locations can be greater than (and not only equal to) traveling time to allow waiting time during the
shift, for example between the end of the travel and the real entry on the site that may be delayed
because of opening hours. Any operation at site p takes a constant time equal to setupTime(p).
An operation cannot be stopped for resting (operations are not preemptive), as well as checking
operations at start and end of the shift (preTripTime and postTripTime). An operation must be
performed during the opening hours of the site: the interval [arrival(o),departure(o)[induced by
operation o at site p must be contained into one of the intervals timeWindows(p). Note that if a
vehicle arrives at a site which is closed, then the vehicle can wait the opening of the site. More
generally, a vehicle can stop and wait at any moment during its travel between two operations;
the resulting waiting time is assimilated to working time. In addition, all sites of a shift must be
accessible to the three resources assigned to the shift: for each site p, the driver (resp. tractor, trailer)
of the shift must belong to the list allowedDrivers(p) (resp. allowedTractors(p), allowedTrailers(p)).
Finally, any delivery performed at customer p with flag firstAfterSource(p) equal to true must be
immediately preceded by a loading operation at a plant.

2.3.2. Inventory constraints. Three kinds of inventories have to be managed: tanks of
customers, tanks of plants, and trailers. The tank level of a site p at time step h, denoted by
tankQuantity(p,h), must remain between zero and its capacity. For customers (except call-in cus-
tomers which work in pure order-resupply mode), the tank quantity at each time step h is equal to
the tank quantity at the previous time step h− 1, minus the forecasted consumption over h, plus
all the deliveries performed over h. Note that the quantities delivered to customers must be posi-
tive (loading is forbidden at customers). More formally, the inventory dynamics for customers are
expressed as follows: tankQuantity(p,−1) = initialTankQuantity(p) and for all h∈ {0, . . . ,H − 1},{

tankQuantity(p,h) = tankQuantity(p,h− 1)− forecast(p,h)+
∑

o∈operations(p,h)

quantity(o)

if tankQuantity(p,h)< 0, then tankQuantity(p,h) = 0

with operations(p,h) corresponding to the set of operations performed at site p whose starting date
belongs to time step h. Then, tankQuantity(p,h)< safetyLevel(p) implies one stockout for customer
p. The inventory dynamics is symmetric for plants, since the forecasted productions and loading
quantities have negative values (delivery is forbidden at plants). Thus, the underflow condition is
changed into an overflow condition:

if tankQuantity(p,h)> capacity(p), then tankQuantity(p,h) = capacity(p)

Note that overflows (which corresponds to venting product) are not penalized in the objective
function, because production aspects are assumed to be not managed in this model.

For trailers, the inventory dynamics is realized in continuous time. At any time, the trailer
quantity must remain between zero and the capacity of the trailer. The quantity in a trailer at the
beginning of a shift is equal to the quantity in this trailer at the end of its previous shift (or the
initial quantity if the shift is the first performed by the trailer). Then, the trailer quantity after
one operation is equal to the trailer quantity before the operation, plus the delivered or loaded
quantity at the site concerned by the operation.

2.4. Objective
The objective, defined over the long term (more than 90 days), is three-fold: first to avoid missed
orders, then to avoid customer stockouts, and finally to minimize the logistic ratio. As noted earlier,
production costs (like venting costs) are not integrated in the model; only distribution costs are
taken into account.

The first term MO of the objective function deals with missed orders. An order r is considered
as non missed if an operation o is assigned to this one satisfying quantity(o) ≥ quantity(r) and

Benoist et al.: Real-life inventory routing
10 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

arrival(o) ∈ [earliestTime(r), latestTime(r)[. For each customer p, the number of missed orders is
denoted by nbMissedOrders(p) . Then the total missed order cost MO is given by:

MO =
∑

p∈customers

missedOrderCost(p)×nbMissedOrders(p)

The second term SO concerns stockouts. A stockout appears at customer p (with flag callIn to
false) at time step h if tankQuantity(p,h) < safetyLevel(p). For each customer p, the number of
time steps in stockout is denoted by nbStockouts(p). Then, the total stockout cost SO is given by:

SO =
∑

p∈customers

stockoutCost(p)×nbStockouts(p)

To avoid end-of-horizon side effects, missed orders and stockouts are counted over a shorter horizon
T ′, defined as T −maxd∈drivers maxAmplitude(d), in order to be sure that demands arising at the
end of the horizon can always be satisfied.

The third term is the logistic ratio LR= SC/DQ , with SC the total shift cost and DQ the total
delivered quantity over the considered horizon (with the exception that if DQ = 0, then LR = 0).
The latter is simply computed as the sum of delivered quantities (that is, positive quantities) for
all shifts. The distance of a shift s, denoted by distShift(s), corresponds to the sum of arc lengths
of the tour induced by the shift; the duration of a shift s, denoted by timeShift(s), corresponds
to the time spent by the driver to work over the shift (that is, end(s)− start(s) minus the sum
of layover durations). The total number of deliveries (resp. loadings, layovers) over a shift s is
denoted by nbDeliveries(s) (resp. nbLoadings(s), nbLayovers(s)). Then, the cost SC (s) of a shift
s is composed of five terms:

SC (s) = distanceCost(tractor(s))× distShift(s)
+ timeCost(driver(s))× timeShift(s)
+ deliveryCost(driver(s))×nbDeliveries(s)
+ loadingCost(driver(s))×nbLoadings(s)
+ layoverCost(driver(s))×nbLayovers(s)

Hence, the total shift cost SC is given by SC =
∑

s∈shifts SC (s).
To conclude, we emphasize on the fact that the three terms of the global objective function are

optimized in lexicographic order : MO ≻ SO ≻ LR. As mentioned in introduction, solutions with
MO = 0 and SO = 0 must be (easily) found in practice.

3. The short-term surrogate objective
One of the main difficulties encountered in IRP problems is to take short-term decisions ensuring
long-term improvements. Optimizing the logistic ratio LR over a short-term horizon does not lead
necessarily to long-term optimal solutions. For example, assume that a faraway customer has no
stockout over the next days. A good short-term decision is to avoid delivering this customer (because
delivering necessarily increases the global logistic ratio). More generally, deliveries shall only be
triggered due to the appearance of shortages over the horizon. But such short-term decisions may
be highly suboptimal in the long run, especially if some near-optimal deliveries are possible over
these next days due to the availability of resources. In fact, the short-term goal can be summarized
into the following rule: “never put off until tomorrow what you can do optimally today”.

This lack of anticipation when minimizing directly the logistic ratio over the short term motivates
us to introduce a surrogate objective function. Then, the short-term goal shall be to minimize the

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 11

global extra cost per unit of delivered product, compared to the optimal logistic ratio LR∗. Denote
by LR∗(p) the optimal logistic ratio for delivering the customer p and then by

SC ∗(s) =
∑

customer p
delivered over s

LR∗(p)× quantity(p)

the optimal cost of the shift s according to the quantities delivered at each customer over s. Then,
the surrogate logistic ratio LR′ is defined as:

LR′ =

∑
s(SC (s)−SC ∗(s))

DQ

Unfortunately, it requires to tackle another problem: the computation of lower bounds of LR∗(p) for
each customer p (and thus of the global logistic ratio LR∗). In the following subsection is described
how to compute such bounds.

3.1. Computing lower bounds
We describe how to compute a lower bound LRmin for the optimal logistic ratio LR∗, assuming that
missed orders and stockouts are avoided. Hence, the values MO = 0, SO = 0, LR = LRmin induces
a global lower bound. For now, assuming that all orders are satisfied and no stockout appear, our
goal is to compute LRmin.

First, a lower bound for LR∗(p) is given. A trip is defined as a subpart of a tour (see Figure 2):
it is a sequence of visits starting at a plant (or a base), delivering one or more customers, and
finishing at a plant (or a base). In other words, a trip t in the shift s corresponds to an interval
[start(t), end(t)[with start(t) (resp. end(t)) the starting date from the plant or the base (resp.
the starting date from the plant or the base visited in the next trip). Then, the cost of a shift
can be decomposed according to its trips, in such a way that the cost of a trip corresponds to the
costs (distance, time, deliveries, loadings, layovers) accumulated over [start(t), end(t)[. Besides, the
cost of each trip can be dispatched to visited customers proportionally to the delivered quantities.
For each customer p, a lower bound LRmin(p) is obtained by dividing the cost of the cheapest
trip visiting p by the maximum capacity of a trailer able to perform this trip. Since the distance
matrix satisfies the triangular inequality, the cheapest trip consists in visiting solely the customer p.
Consequently, LRmin(p) is computed in O((B+P)2) time for each customer p, with B the number
of bases and P the number of plants.

delivery loadingloading delivery basebase delivery delivery

trip t2trip t0 trip t1

delivery

Figure 2 The trips of a shift.

Now, the local lower bounds LRmin(p) are used for computing a global lower bound LRmin.
For each customer p, denote by Qmin(p) the minimum quantity to deliver to p to prevent it from
falling under its safety level over the planning horizon. On the other hand, denote by Qmax(p) the
maximum amount of product deliverable along the planning horizon without overfilling its tank.
Thus, the quantity q(p) which can be delivered to each customer p in order to avoid stockout is
between Qmin(p) and Qmax(p) with:

Qmin(p) = safetyLevel(p)− (initialQuantity(p)−
∑

h forecast(p,h))
Qmax(p) = capacity(p)− (initialQuantity(p)−

∑
h forecast(p,h))

Benoist et al.: Real-life inventory routing
12 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

If Qmin(p) = 0 for all customer p, then the empty solution (no shift) is optimal. Now, assume that
at least one customer p exists such that Qmin(p)> 0. A first lower bound LRmin is given by:

LRmin =

∑
p(LRmin(p)×Qmin(p))∑

pQmax(p)

Each term of the numerator corresponds to the minimum cost of the shifts needed for delivering
the quantity Qmin(p) to customer p over the planning horizon. But a better lower bound can be
obtained by solving the following mathematical program:

Minimize

∑
p(LRmin(p)× q(p))∑

p q(p)

q(p)∈ [Qmin(p),Qmax(p)] ∀p

A solution vector of this program is denoted by Q= (q(1), . . . , q(n)) and its cost by f(Q). First,
an optimum solution Q∗ of this program is shown to be extremal: the vector Q is such that
q(p) = Qmin(p) or q(p) = Qmax(p) for each component p. Indeed, a solution Q∗ is optimal if and
only if no solution Q exists such that g(Q) =

∑
p((LRmin(p)− f(Q∗))× q(p)) < 0. Suppose that

an index p exists such that q(p) is not an extreme of [Qmin(p),Qmax(p)]. If LRmin(p)− f(Q∗)≤ 0
(resp. LRmin(p)−f(Q∗)≥ 0), then setting q(p) =Qmax(p) (resp. q(p) =Qmin(p)) leads to a solution
having a cost lower than or equal to f(Q∗). Since this operation can be performed independently
for each index p (because g(Q) is additively separable), our initial claim is proved.

Now, any extremal optimum vector can be normalized by ordering its components such that
the corresponding constants LRmin(p) are nondecreasing. Following the previous discussion, an
extremal optimum Q∗ has a normal form (Qmax(1), . . . ,Qmax(p

∗),Qmin(p
∗ + 1), . . . ,Qmin(n)), with

LRmin(1)≤ · · · ≤ LRmin(n). Consequently, the computation of an extremal optimum is reduced to
the computation of an index p∗ ∈ {1, . . . , n} for which the normal form has a minimum cost, which
is done in linear time. In conclusion, computing an optimum vector Q∗ of the above program is
done in O(n logn) time and linear space, with n the number of components of the the vector.

To summarize, the local lower bounds LRmin(p), defined for each customer p, are computed in
O(C(B+P)2) time and O(C) space, with C (resp. P , B) the number of customers (resp. plants,
bases). Then, the global lower bound LRmin is computed in O(C logC) time and O(C) space.

4. Urgency-based constructive heuristic
In order to quickly build an initial solution, a constructive heuristic was designed, based on a
classical urgency approach. The goal of this algorithm is to serve orders and to avoid stockouts.
Basically, it repeatedly picks the next order or stockout and tries to create a new delivery for this
customer. The deadline of a demand (order or stockout) is defined as the latest start of a shift that
would reach the customer on time to perform the desired delivery, taking travel time and opening
hours into account.

Algorithm Greedy;
Input: an instance of the IRP;
Output: a solution S to the IRP;
Begin;

S←∅;
initialize the set D of demands with orders and stockouts for each customer;
while D is not empty do
pick the demand d with earliest deadline in D;
create the cheapest delivery o to satisfy d (inside a new shift, possibly);

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 13

if o exists then
add o to S (with the new shift, if any);
compute the next stockout after start(o) and update the deadline of d accordingly;

else remove d from D;
return S;

End;

At each step of the algorithm, the newly created delivery can be either appended at the end of
an existing shift of included in a new shift. In the first case, the extension of a shift can be made
impossible due to accessibility or resources constraints (for example, the resulting duration of this
shift may extend the maximum allowed amplitude). For each existing shift, this feasibility is tested
in constant time. However, inserting a loading operation can be required for refilling the trailer
before performing the delivery, in which case all plants are tested. Therefore, this stage runs in
O(SP) time, with S the number of shifts returned by the greedy algorithm and P the number of
plants. In the second case, all bases and all possible triplets of resources are considered. Here again,
all plants are considered if a loading is needed. The worst-case time complexity of this enumeration
is in O(BRP), with B the number of bases and R the number of triplets of resources (drivers,
tractors, trailers). But in effect, this running time can be reduced by cutting strongly the search
tree, in particular once a feasible shift has been found.

The choice of the delivery date impacts the delivered volume (since the available space in the
customer tank increases with time) and the availability of resources (“packing” shifts to the left
is preferable when possible). Thus, the possible delivery interval is split into two parts: we first
consider delivery dates allowing a full-drop delivery with an earliest scheduling strategy and then
apply a latest scheduling strategy for other dates. All deliveries considered in these two cases are
compared by dividing the cost of the shift (or the increase of the cost of the existing shift) by
the quantity of the delivery. If no feasible delivery could be created for solving a stockout, then
another search is attempted trying to deliver product to this customer as early as possible after
the stockout. Finally, each time a delivery is created, the inventory levels for this customer are
updated and its next stockout is set to the first time step under safety level after the start of the
created delivery.

By construction, this urgency-based insertion heuristic never backtracks on decisions taken about
dates nor quantities. Practically, the running time of this greedy algorithm is about a dozen of
seconds (on standard computers), even for the largest instances of our benchmarks. Even if the
local-search heuristic described in the next section is able to start from an empty set of shifts,
the use of the initial solution obtained by this constructive algorithm yields a significant speed-up
in the convergence toward high-quality solutions (in particular, when finding a solution without
missed order and stockout is hard).

5. High-performance local search
In this section, the main ingredients of the local-search heuristic are detailed. The exposition
follows the three-layers methodology by Estellon et al. (2009) for designing and engineering high-
performance local-search algorithms: heuristic & search strategy, transformations, algorithms &
implementation.

5.1. Heuristic & search strategy
Below is outlined the skeleton of the whole heuristic, which is a simple first-improvement stochastic
descent. We insist on the fact that no metaheuristic is used, avoiding the use of too much tuning
parameters. For more details on metaheuristics and their applications in combinatorial optimiza-
tion, the reader is referred to the book edited by Aarts and Lenstra (1997).

Benoist et al.: Real-life inventory routing
14 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

Algorithm Stochastic-Descent;
Input: an instance I of the IRP;
Output: a solution S to the IRP;
Begin;

S← Greedy(I);
Missed order optimization:

while MO > 0 and timeLimitMO is not reached do
choose stochastically a transformation T in the pool TMO ;
evaluate the gain of the application of T to S;
if the gain is not negative then commit T ; else rollback T ;

Stockout optimization:
while SO > 0 and timeLimitSO is not reached do
choose stochastically a transformation T in the pool TSO ;
evaluate the gain of the application of T to S;
if the gain is not negative then commit T ; else rollback T ;

Logistic ratio optimization:
while timeLimitLR is not reached do
choose stochastically a transformation T in the pool TLR;
evaluate the gain of the application of T to S;
if the gain is not negative then commit T ; else rollback T ;

return S;
End;

The heuristic is divided into three optimization phases: the first one (MO) consists in minimizing
the cost related to missed orders, the second one (SO) consists in minimizing the cost related to
stockouts, and the third one (LR) consists in optimizing the objective related to logistic ratio. In
practice, the total execution time is divided as follows: 10% for MO optimization, 40% for SO
optimization, 50% for LR optimization. In the same way, the procedure which evaluates the gain
of a transformation is staged into three parts (see Figure 3). Note that accepting solutions with
equal cost at each optimization phase is crucial for ensuring the diversification of the search and
thus the convergence toward high-quality solutions.

>
0
or

=
0
w
h
en

= 0

= 0

≥ 0

< 0

>
0
or

=
0
w
h
en

op
ti
m
iz
in
g
S
O

op
ti
m
iz
in
g
M
O

< 0

< 0

rollback T

commit T

evaluate T on S

gainMO ′

gainSO

gainLR′

Figure 3 Evaluation scheme of a transformation.

Roughly speaking, the gain resulting of the application of a transformation T is the difference
between the value of the cost before the application of T to the current solution S (old) and the

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 15

value of this one after its application (new). Now, we explain how are computed the gains at each
stage of the evaluation scheme.

A surrogate cost MO ′ is defined to smooth the real objective MO for facilitating the conver-
gence of the local search. This is done by introducing for each order an intermediate state called
“unsatisfied” between the states “missed” and “satisfied”. An order is unsatisfied if an operation
exists satisfying the time window of the order, but not its quantity. In this way, an order is satisfied
(resp. missed) when both the dates and the quantity are respected by at least one operation (resp.
by no operation). Having denoted the number of unsatisfied orders by UO , the value of gainMO′ is
computed as follows:

gainMO′ =

{
MOold − MOnew if MOold ̸=MOnew

UOold − UOnew otherwise

Consequently, a transformation cannot be accepted if either the number of missed orders or the
number of unsatisfied orders is deteriorated. Then, the gain related to stockouts is computed as
gainSO = SOold−SOnew. Finally, the sign of gainLR′ is obtained by evaluating the expression

SC old−SC ∗
old

DQold

− SC new−SC ∗
new

DQnew

or equivalently DQnew(SC old − SC ∗
old)−DQold(SC new − SC ∗

new) which avoids imprecisions due to
floating-point arithmetic when the expression tends toward zero.

Even if high performance relies on many implementation details, the practical efficiency of the
present heuristic relies on two main points: the transformations and the algorithms employed for
making their evaluation fast.

5.2. The transformations
The transformations are classified into two categories: the first ones work on operations, the second
ones work on shifts. Having introduced the different transformations, their main instantiation shall
be described. An instantiation corresponds to the way the objects modified by the transformation
are selected. While defining orthogonal transformations (that is, transformations inducing disjoint
neighborhoods) enables to diversify the search and then reach better-quality solutions, specializing
transformations according to specificities of the problem (because random choices are not the most
appropriate in all situations) enables to intensify the search and then speed up the convergence of
the heuristic.

The transformations on operations are grouped into the following types: insertion, deletion,
ejection, move, swap (see Figure 4). Two kinds of insertion are defined: the first kind consists in
inserting an operation (pickup or delivery) into an existing shift; the second consists in inserting a
pickup followed by a delivery into a shift (the inserted plant is chosen to be one of the nearest from
the inserted customer). The deletion consists in deleting a block of operations (that is, a set of
consecutive operations) in a shift. An ejection consists in replacing an existing operation by a new
one on a different site. The move transformation consists in extracting a block of operations from
a shift and reinserting it at another position. Two kinds of moves are defined: moving operations
from a shift to another one, or moving operations inside a shift. A swap exchanges two different
blocks of operations. As for moves, several kinds of swaps are defined: the swap of blocks between
shifts, the swap of blocks inside a shift, or the “mirror” which consists in a chronological reversal
of a block of operations in a shift. The mirror transformation corresponds to the well-known 2-opt
improvement used for solving traveling salesman problems (see Aarts and Lenstra (1997) for more
details).

The transformations on shifts are grouped into the following types: insertion, deletion, rolling,
move, swap. As for operations, two kinds of insertion are defined: insertion of a shift containing one

Benoist et al.: Real-life inventory routing
16 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

move

insertion deletion

ejection

mirror

inside shift

swap
inside shift

blockbetween shifts
move

between shifts
swap

Figure 4 The transformations on operations.

Note. Original tours are given by straight arcs, dashed arcs are removed by the transformation, curved and vertical
arcs are added by the transformation.

operation (pickup or delivery), insertion of a shift with a pickup followed by a delivery. Deletion
consists in removing an existing shift. The rolling transformation translates a shift over time. The
move consists in extracting a shift from the planning of some of its resources and reinserting it
into the planning of other ones (such a transformation allows to change some of the ressources
of the shift and its starting date). The swap is defined similarly: the ressources of the shifts are
exchanged and their starting dates can be translated over time. The fusion of two shifts into one
new shift as well as the separation of one shift into two new ones are also available.

Now, these transformations are declined from different ways. The first option concerns the max-
imal size of blocks for transformations where blocks of operations are involved. In this way, more
generic transformations are defined allowing a larger diversification if needed: the (k, l)-ejection
which consists in replacing k existing operations by l new ones on different sites, the k-move which
consists in moving a block of k operations, the (k, l)-swap which consists in exchanging a block of
k operations with a block of l operations, or the k-mirror which consists in reversing a block of k
operations.

Then, the second option allows to specialize some transformations when optimizing one of the
three objectives. These derivations involve the choice of the sites affected by the transformations.
For example, inserting a delivery serving a customer without missed order (resp. stockout) is not
interesting when minimizing the number of missed orders (resp. stockouts). In the same way,
exchanging two operations which are performed on sites which are very distant is unlikely to
succeed when optimizing the logistic ratio. Several derivations have been designed, which differ
slightly from one transformation to another. Here are given the three main derivations, essentially
used when inserting/ejecting operations or inserting/rolling shifts: “missed order” which positions
the delivery so as to (try to) satisfy an order, “stockout” which places the delivery so as to solve a
stockout, “nearest” where the customers to insert or exchange are chosen among the nearest ones.

The third option corresponds to the direction used to recompute all the dates of the modified
shifts: backward over time by considering the ending date of the shift as fixed, or forward over time
by considering its starting date as fixed. This option is available for all transformations, except

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 17

the deletion of shifts. For the transformations modifying two shifts at once (for example, move
operations between shifts), this results in four possible instantiations: backward/backward, back-
ward/forward, forward/backward, forward/forward. Finally, the fourth option allows to augment
the number of operations whose quantity is modified during the volume assignment. Recomputing
operation quantities during the volume assignment increases its running time but allows repair-
ing stockouts possibly introduced by the transformation, increasing the acceptation rate of the
transformations (more details are given in the next section about volume assignment).

The reader shall note that no very large-scale neighborhood is employed. Roughly speaking, the
neighborhood explored here has a size O(n2) with n the number of operations and shifts in the
current solution, but the constant hidden by the O notation is large. The number of transformations
in TMO , TSO , TLR used respectively in optimization phases MO , SO , LR are of 47, 49, 71. These
ones are exhaustively listed at the end of the paper for the interested reader (Tables 17 and 18). For
each optimisation phase, the transformation to apply is chosen randomly with equal probability
over all transformations of the pool (improvements being not really significant, further tunings
with non-uniform distribution have been abandoned to facilitate maintenance and evolutions).

5.3. Algorithms & implementation
Finally, the kernel of the local search is outlined. Playing a central role in the efficiency of the
local-search heuristic, only the evaluation procedure is detailed here. This one is separated into
two routines: scheduling shifts, and then assigning volumes. Roughly speaking, the objective of
the scheduling routine is to build shifts with smallest costs, whereas the volume assignment tends
to maximize the quantity delivered to customers. Even approximately, this leads to minimize the
surrogate logistic ratio.

Although conceptually simple, the practical implementation of these routines are considerably
complicated by incremental aspects. First, the evaluation is implemented so as to work only on
objects (operations, shifts, sites, resources) impacted by the transformation. Besides, all dynamic
data associated to these objects are duplicated into backup ones, which correspond to the solution
before transformation, and current ones, which correspond to the solution after transformation.
This duplication allows to have simpler and faster rollback/commit procedures, whose efficiency is
also of importance in the present context.

5.3.1. Scheduling shifts. The transformations modify some shifts in the current solution (at
most two actually). When a shift is impacted by a transformation (for example, an operation is
inserted into the shift), the starting and ending dates of its operations must be computed anew.
Consider the shift s = (o1, . . . , on) and assume that an operation ō is inserted into s between
operations i and j. The resulting shift s̄ is now composed of operations (o1, . . . , oi, ō, oj, . . . , on).
Then, we have two possibilities: rescheduling dates forward or rescheduling dates backward. The
forward (resp. backward) scheduling consists in fixing the ending date of oi (resp. the starting
date of oj) in order to recompute the starting (resp. ending) dates of (ō, . . . , on) (resp. (o1, . . . , ō)).
Here computing dates can be done without assigning volumes to operations, because the durations
of operations do not depend on delivered/loaded quantities. Since computing dates backward or
forward is made completely symmetric by representing shifts with doubly-linked lists, the discussion
shall be reduced to the forward case.

More formally, we have to solve the following decision problem, called Shift-Scheduling: given
a starting date for the shift s = (o1, . . . , on), determine the dates of each operation such that
the shift is admissible. Two equivalent optimization problems are: having fixed its starting date,
build a shift with the earliest ending date or with the minimum cost. A similar problem, called
Truckload-Trip-Scheduling, has been recently studied by Archetti and Savelsbergh (2007).
This latter problem is more restricted in the sense that only one opening time window is considered

Benoist et al.: Real-life inventory routing
18 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

for each location to visit and that the rest time must be equal to (not greater than) the legal dura-
tion. Archetti and Savelsbergh (2007) sketch a O(n2)-time algorithm for solving the truckload trip
scheduling problem, with n the number of locations to visit. For the sake of efficiency, a linear-time
and space algorithm has been designed for solving heuristically the Shift-Scheduling problem.

Algorithm Schedule-Shift-Greedy;
Input: an instance of Shift-Scheduling;
Output: an admissible shift if any, null otherwise;
Begin;

define an empty shift;
for each location to visit do
drive to next location (by taking rests as late as possible if needed);
if waiting time is needed (due to opening time windows) then
if rest time has been taken on current arc then
lengthen one of the rests to absorb waiting time;

else if a rest is needed (due to waiting time) or waiting time is larger than rest time then
take a rest (absorbing additional waiting time if any);

else
wait for the opening of location;

perform operation at next location and add it to the shift;
if maximal amplitude of the shift is exceeded then return null (infeasibility);

return the shift (feasibility);
End;

This algorithm is greedy in the sense that operations are chronologically set without backtrack-
ing. Each loop is performed in constant time and space (if rests are not stored explicitly) and
the whole algorithm runs in O(n) time and space. The correctness of the algorithm is ensured by
construction. The key of the Shift-Scheduling problem is to minimize unproductive time over
the shift. Thereby, the main idea behind the algorithm is to take rests as late as possible during
the trip and to avoid waiting time due to opening time windows of locations as much as possible.
Here we try to remove waiting time by converting it into rest time (see Figure 5), but only on the
current arc, which is suboptimal. Indeed, the algorithm could be reinforced by trying to convert
waiting time into rest time on previous arcs (as done by Archetti and Savelsbergh (2007)). But
such a modification would lead to a quadratic-time algorithm, which is not desired here, while not
guaranteeing optimality because of multiple opening time windows. On the other hand, we have
observed that waiting time is rarely generated in practice since many trips are completed in a day
or even half a day, ensuring optimality of the algorithm Schedule-Shift-Greedy in most cases.
Note that to our knowledge, the complexity of the Shift-Scheduling problem remains unknown.

layover

postTripTime

delivery layover

postTripTime

delivery

ci

ci

cj

cj

preTripTime

preTripTime

waiting delivery

delivery

opening hours of cj

Figure 5 An example with waiting time converted into rest time.

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 19

5.3.2. Assigning volumes. Having rescheduled modified shifts, we have to reassign quan-
tities to impacted operations. Having fixed the dates of all operations, the problem consists in
assigning volumes such that inventory constraints are respected, while maximizing the total deliv-
ered quantity over all shifts. A similar problem, called Delivery-Volume-Optimization, has
been addressed by Campbell and Savelsbergh (2004b). In this problem, the authors consider only
deliveries on routes and not loadings, but this one is complicated by the fact that the duration of
an operation depends on the quantity delivered.

From the theoretical point of view, the present problem, called Volume-Assigning, is not so
hard once observed that it can be formulated as a maximum flow problem (in a directed acyclic
network). Then, this one can be solved in O(n3) time by using a classical maximum flow algorithm
(Cormen et al. 2004, pp. 625–675), with n the number of operations. As mentioned previously,
such a time complexity is not desirable here, even if guaranteeing an optimal volume assignment.
Practically, naive implementations having a time complexity depending on the number H of time
steps (360 in practice) are prohibited too; indeed, when the granularity becomes smaller than one
day, the number of time steps exceeds largely the number of operations at a site (two per day in
the worst case).

l

C
c2

c1

c0

p0

P

H

l

l

v

L

L

U

tl0 tl1

L

Figure 6 An example of flow network for assigning volumes.

Note. Operations are represented by nodes, input flows L correspond to initial levels for each inventory (trailer,
customer, plant), input flow C (resp. P) corresponds to consumption of customer c1 (resp. production of plant p0)
over the time steps between the current operation and the previous one, flows l correspond to inventory levels (trailer,
customer, plant) between two operations, flow v allows an overflow at plant (venting). Flows on arcs representing
inventory levels are upper bounded by the capacity of the inventory; for customers, flows are also lower bounded by
safety levels. Note that if some consecutive operations appear over the same time step (like the ones dotted around),
input flows corresponding to consumption or production are cumulated at the last operation of this time step.

Thus, a O(n logn)-time greedy algorithm has been designed to solve approximately theVolume-
Assigning problem. The main idea behind the algorithm is simple: having ordered operations
chronologically (that is, according to increasing starting dates), quantities are assigned to opera-
tions in this order following a greedy rule. Here we use the basic rule consisting in maximizing the
quantity delivered/loaded at each operation, which is a good policy for minimizing the surrogate
logistic ratio (this joins the ideas developed by Campbell and Savelsbergh (2004b)). Note that the
chronological ordering is crucial for ensuring the respect of constraints related to inventory dynam-
ics (flow conservation, capacity constraints). In graph-theoretical terms, the algorithm consists in
pushing flow in the induced directed acyclic network following a topological order of the nodes
(ensuring that no node is visited twice).

Benoist et al.: Real-life inventory routing
20 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

Because the number of operations may be large (as worst case in practice, one can imagine that
the 1500 customers must be delivered two times per day, leading to n= 45 000), a tradeoff must
be found between the time complexity (even linear) and the quality of the volumes assignment. To
introduce flexibility on this point, the greedy algorithm has been designed for computing partial
reassignments, from the minimal one to the complete one. The minimal reassignment consists in
changing only the volumes on impacted operations (that is, operations whose starting dates are
modified by the transformation); then, it suffices to tag as impacted some additional operations
to expand the reassignment. This complicates notably the practical implementation of the greedy
algorithm. Indeed, changing the quantity delivered at an operation is delicate since increasing
(resp. decreasing) the quantity may imply overflows (resp. stockouts) at future operations. Then,
determining the (maximum) quantity to deliver/load at each operation is not straightforward.

For each site p, denote by n̄p the number of operations between the first impacted operation
(that is, whose quantity can be modified by the transformation) in the chronological ordering and
the last one over the horizon. If no operation is impacted at site p, then n̄p = 0. Hence, we define
n̄=

∑
p n̄p. When the set of impacted operations consist only in operations whose dates are modified

by the transformation, one can observe in practice that n̄≪ n, since each transformation modify
at most two shifts (the number of sites visited by one shift is generally small). Consequently, it is
important to provide algorithms whose running time is linear in O(n̄), and not only in O(n). Below
is outlined an O(n̄ log n̄)-time algorithm for assigning volumes. But before, more explanations are
given on how the maximum deliverable quantity is computed (the maximum loadable quantity can
be obtained in a symmetric way).

Denote by customerLevel(c, i) (resp. trailerLevel(r, i)) the level of customer c (resp. trailer r)
before starting the operation i and by avoidOverflow(c, i) the maximum quantity that can be
delivered to customer c at operation i without inducing overflows until the end of the horizon.
In this way, the deliverable quantity at operation i, denoted by deliverable(i), is upper bounded
by min{trailerLevel(r, i),avoidOverflow(c, i)}. Then, this bound is reinforced in such a way that
the quantity remaining in the trailer after a delivery is sufficient to avoid stockouts at customers
visited by the shift until the next loading. Denote by avoidStockout(c, i) the minimum quantity to
deliver at operation i to avoid stockout until the end of the horizon. Now, the minimum quantity
neededAfter(r, i) which must remain in the trailer r after operation i to avoid stockout later is
obtained by summing avoidStockout(c, i) for all operations between the current one and the next
loading. Then, we have

deliverable(i)≤min{trailerLevel(r, i)−neededAfter(r, i),avoidOverflow(c, i)}

Given the chronological-ordered list of operations for each trailer, customer and plant, all the data
structures mentioned above can be computed in O(n̄) time. Updating customerLevel(c, i) (resp.
trailerLevel(r, i)) for any operation i is done by sweeping forward the operations delivering customer
c (resp. performed by the trailer r). Then, updating avoidOverflow(c, i) and avoidStockout(c, i)
for any operation i is done by sweeping backward the operations performed at customer c (note
that the consumption between two operations is obtained in constant time by storing cumulated
consumptions over the horizon). Finally, computing neededAfter(r, i) for any operation i is done by
sweeping backward the operations of shifts performed by r. Below is given a sketch of algorithm.

Algorithm Assign-Volumes-Greedy;
Input: the set E of n̄ impacted operations;
Begin;

sort the set E chronologically;
update customerLevel , trailerLevel , avoidOverflow , avoidStockout , neededAfter ;
for each operation in E do

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 21

assign the maximum deliverable/loadable quantity to the operation;
End;

According to the previous discussion, the five data structures which serve to the calculation of
the maximum deliverable/loadable quantity are updated in O(n̄) time. Then, sorting the set E is
done in O(n̄ log n̄) time in the worst case; in effect, the heapsort algorithm is used (see Cormen
et al. (2004, pp. 121–137)). Finally, the loop is done in linear time, since the calculation of the
maximum deliverable/loadable quantity requires only constant time by using the adequate data
structures. Consequently, the whole algorithm runs in O(n̄ log n̄) time.

In theory, the greedy algorithm is far from being optimal. Figure 7 gives the smallest configuration
for which the greedy algorithm fails to find an optimal assignment. On the other hand, two sufficient
conditions hold for which the greedy assignment is optimal. The proofs are not detailed here
because easy to establish. The first condition corresponds to the case where each customer is served
at most once over the planning horizon. This condition is interesting because likely to be met in
practice. The second condition corresponds to the case where each shift visits only one customer.
For example, this condition is satisfied when customers have infinite storage capacity.

Experiments have been made for evaluating the practical performance of this critical routine. In
practice, its running time is shown to be constant with respect of the total number of operations:
it is 100 times faster than the full application of the greedy algorithm (that is, considering that all
operations are impacted, implying that n̄= n) and 2000 times faster than exact algorithms (tests
have been realized with the simplex algorithm of the linear programming library GLPK 4.24).
On the other hand, the total volume delivered by the routine is close to the optimal assignment,
in particular when no stockout appears (the average gap between the greedy assignment and an
optimal one is lower than 2%).

tl0

c0

c1

HU

tl1

o0

o1

o2

Figure 7 Bad configuration for the greedy volume assignment.

Finally, having assigned volumes, computing the gain of the transformation is done efficiently.
The (variation of) cost of shifts is computed during the scheduling, and the (variation of) total
delivered quantity is obtained during the assignment of volumes, without increasing the complexity
of the algorithms. The (variation of) missed orders and stockouts costs are also computed during
the assignment of volumes. Note that computing the number of time steps in stockout between two
consecutive operations requires O(logH) time, with H the number of time steps over the horizon,
since it is equivalent to the problem of searching the zero of a discrete non-increasing function.

5.3.3. Implementation details. All sets (unordered or ordered, fixed or dynamic) are imple-
mented as arrays, in order to improve the cache memory locality. Memory allocation is avoided as
much as possible during local-search iterations: all the data structures are allocated before starting
the local search; an array of capacity n representing a dynamic list is extended if necessary by
reallocating a larger block of memory of size n+ k (with k≈ 10).

Since the success rate of the transformations is low on average (a few percents), the rollback
routine must be very efficient. In this way, the decision variables of the problem (for example, the

Benoist et al.: Real-life inventory routing
22 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

starting and ending dates of an operation) are duplicated in such a way that only temporary data
are modified by the transformation. In this way, the rollback routine consists simply in overwriting
temporary data by current ones (that is, corresponding to the current solution). But this is com-
plicated by the fact that during one transformation, several objects (in particular operations or
shifts) are likely to move in the arrays in which they are stored. In order to ensure the (temporary)
insertion or deletion of one object in O(1) time, the objects of the array are doubly linked (see
Figure 8 which illustrates the exchange of operations between shifts).

oj,7

sj

si

oi,0 oi,1 oi,2 oi,3 oi,4 oi,5 oi,6 oi,7

oj,0 oj,1 oj,2 oj,3 oj,4 oj,5 oj,6

Figure 8 Representation of shifts and operations.

Note. Operations oi,3, oi,4 of the shift si are swapped with operations oj,3, oj,4 of the shift sj : the current links (before
transformation) are plain, the temporary links (after transformation) are dashed.

The main data structures are designed to support basic routines (find, insert, delete, clear) in
O(1) time, even if they are implemented as arrays. An example is the classical data structure
used to implement an unordered list of objects. For example, this one is used to store the cus-
tomers experiencing stockouts in the current solution or the missed orders for each customer. The
unordered list is implemented as an array L, with L.size the current number of elements in L and
L.capacity the capacity of L (that is, the maximum number of elements which can be stored in the
list without exceeding allocated memory). Any element e stored in L has a pointer e.indexL to its
position in the array L. If the maximal number of elements e stored in L is known a priori and is
not too large (a few thousand), then L can be allocated with a capacity equal to this number (to
avoid frequent memory allocations), otherwise the extension of L is done by increasing its capacity
by L.increase elements when needed. Classically, the routines Find, Insert, Delete, and Clear
are implemented as follows to run in O(1) time (note that the elements in L are indexed from 0):

Algorithm Find;
Input: the array L, the element e to find;
Output: true if e belongs to L, false otherwise;
Begin;

i= e.indexL;
if i≥ 0 and i < L.size and L[i] = e then return true;
return false;

End;

Algorithm Insert;
Input: the array L, the element e to insert;
Begin;

if Find(L,e) then return;
if L.size =L.capacity then;
L.capacity =L.capacity +L.increase;
reallocate L with the new L.capacity ;

L[L.size] = e, e.indexL=L.size, L.size =L.size +1;
End;

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 23

Algorithm Delete;

Input: the array L, the element e to delete;

Begin;

if not Find(L,e) then return;

i= e.indexL, e′ =L[L.size − 1];

L[i] = e′, e′.indexL= i, L.size =L.size − 1;

End;

Algorithm Clear;

Input: the array L;

Begin;

L.size = 0;

End;

To end the section, we focus on a data structure which is particularly critical for efficiency.

Operations or shifts correspond to intervals over the horizon, for which we have the following need:

given a date over the horizon, find the previous, current, or next operation performed at a site if

any. The same problem arises for situating shifts performed by a resource. For this, the following

data structure is employed. Assume that the n operations are stored into an ordered list L. The

horizon is divided into m intervals U0, . . . ,Um−1 of given length u (with u dividing T). Then, an

array I is defined such that Ii refers to the first operation whose starting date is larger than the

left endpoint of Ui. The next operation after date d is found by searching the operations between

the one pointed by Ii with i= ⌊d/u⌋ and the one pointed by Ii+1. In this way, the search is done

in O(k) time in the worst case, with k the number of operations contained in the interval Ui. If

u corresponds to the entire horizon (m = 1), then k = n; on the other hand, if u corresponds to

the smallest granularity for expressing time (here the minute, leading to m= 21600), then k = 1.

Assuming that starting dates of operations performed at a site are uniformly distributed over the

horizon, the number k is equal to n/m. In this case, searching takes O(n/m) time (when evaluating

the transformation), but the array I requires O(m) space to be stored and O(m) time to be updated

(when committing the transformation). This implies two compromises: time to evaluate vs. time

to commit, time to evaluate vs. space.

Theoretically, the best value m∗ for solving the compromise on running time corresponds to

the minimum of the function T (m) = E(N/m) +Cm, with N the average number of operations

per customer and E (resp. C) a coefficient relative to the proportion of calls of the evaluate

routine (resp. commit routine) per customer. A simple calculation using differentiation yields m∗ =√
(EN)/C. Table 1 shows the values of m∗ for different realistic configurations of parameters

N,E,C. In practice, we have chosen m∗ = 15, which corresponds to interval Ui of one day: such a

value of m offers a good compromise for running time (even in worst-case situations) and leads to

a small memory footprint.

Table 1 Theoretical values of m∗.

N 2 2 2 10 10 10 30 30 30
E 90 95 99 90 95 99 90 95 99
C 10 5 1 10 5 1 10 5 1

m∗ 4.2 6.2 14.1 9.5 13.8 31.5 16.4 23.9 54.5

Benoist et al.: Real-life inventory routing
24 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

6. Computational experiments
The whole algorithm was implemented in C# 2.0 programming language (for running on Microsoft
.NET 2.0 framework). The resulting program includes nearly 30 000 lines of code, whose 6 000
lines (20%) are dedicated to check the validity of all incremental data structures at each iteration
(only active in debug mode). The whole project (specifications, implementation, tests), realized
during the year 2008, required nearly 300 man-days. All statistics and results presented here have
been obtained (without parallelization) on a computer equipped with a Windows Vista operating
system and a chipset Intel Xeon X5365 64 bits (CPU 3 GHz, L1 cache 64 Kio, L2 cache 4 Mio,
RAM 8 Go). The interested reader is invited to contact the authors to obtain some benchmarks
to work on this problem. Note that the urgency-based constructive heuristic used to compute an
initial solution is also called “greedy algorithm” below.

Since the local-search heuristic is stochastic, 5 runs have been performed with different seeds for
each benchmark. Except contrary mention, all the statistics presented below correspond to average
results obtained for these 5 runs. Note results requiring particular explanations are marked with
asterisks (∗) in figures presenting numerical experiments; these explanations could be found in the
text below.

The analysis of IRP solutions was facilitated by the use of a visualization tool, developed specifi-
cally for the project. This tool allows to visualize shifts from several points of view, as well as sites’
inventories. Figures 10, 11, 12 give an overview of this visualization tool.

6.1. Short-term benchmarks
The local-search algorithm has been extensively tested on short-term benchmarks (15 days) with
different characteristics: realistic (that is, matching the operational conditions), pathological (for
example, with plants whose production is stopped several days), large-scale (for example, with 1 500
sites and 300 resources). Some results are presented for 61 short-term benchmarks decomposed into
3 kinds A, B, C. Table 2 gives the characteristics of each instance: the number of customers, the
number of plants, the number of bases, the number of drivers, the number of tractors, the number
of trailers, the number of call-in customers (that is, customers in pure “order-based resupply”
management), the number of orders over the short-term horizon. When the number of call-in
customers is zero whereas the number of orders is not zero, this means that all the orders are asked
by customers which share the two modes of replenishment (forecasting-based and order-based).
Benchmarks A and B include no orders (all customers are in pure “forecasting-based resupply”
mode), whereas benchmarks C include some customers asking orders; the base A contains “easy”
instances, that is, instances for which our greedy algorithm finds a solution without missed order
and stockout. The results obtained by the greedy algorithm on benchmarks A, B, C are shown on
Tables 3 and 4. Two kinds of results are presented for the local-search heuristic: the results obtained
by optimizing directly the logistic ratio LR (denoted by LS-LR and reported on Tables 5 and 6)
and the ones obtained by optimizing the surrogate ratio LR′ (denoted by LS-LR′ and reported
on Tables 7 and 8). In order to compare solutions with missed orders and stockouts, a global cost
GC =MO +SO +LR is introduced.

The reader shall note the following remarkable instances: A11, B01, B28, B29, B30, and particu-
larly B31 are classified as large-scale instances (more than 500 customers); B28 and B29 are some
instances where the production has been stopped at plants (no product is loadable); B30 contains
many customers in stockout at the beginning of the horizon; the customers defined in instances
C03 and C04 have tight opening hours (for example, a customer can be open only during 6 hours
over the 15 days); almost all the customers of C12 are call-in customers (implying more than 600
orders to satisfy).

The running time of the greedy algorithm is of the order of few seconds for large-scale instances
(12 seconds for instance B31). Statistics about the performance of the local search are given

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 25

on Table 9. The column “attempt” corresponds to the number of transformations attempted by
the local-search heuristic. The columns “accept” (resp. “improve”) corresponds to the number of
accepted (resp. strictly improving) transformations; in addition, the corresponding rate for 100
(resp. 10 000) attempted transformations is specified. Note that average values given at the bottom
of the table are calculated by omitting exceptional results obtained on C04 instance (tight opening
hours cause early rejections, resulting in more attempts). The local-search algorithm attempts more
than 10 000 transformations per second, even for large-scale instances. On average, our algorithm
visits more than 10 million solutions in the search space during 5 minutes of running time (which is
the desired time limit in operational conditions). When planning over a 15-days horizon, the mem-
ory allocated by the program does not exceed 30 Mo for medium-size instances (hundred sites, ten
resources), and 300 Mo for large-scale instances (thousand sites, hundred resources). The accep-
tance rate, which corresponds to the number of accepted transformations (that is, transformations
not strictly improving the current solution) over the number of attempted ones, varies essentially
between 1 and 10%, with an average value of 5% over all the instances of A, B, C. Note that this
rate is quasi constant all along the search (that is, during the 5 minutes of running time), allowing
a large diversification of the search (without the use of metaheuristics). On the other hand, the
number of strictly improving transformations is of several hundreds, which corresponds to a rate
of nearly 2 improvements for 10 000 attempts. One can observe that the choice of objective (LR
or LR′) does not affect the performance of the local-search heuristic.

The column “gain GC” (resp. “gain LR”, “gain LR′”) on Tables 5 and 7 reports the gain for
GC (resp. LR, LR′) in comparison to the solution found by the greedy algorithm. The gain for
GC allows to evaluate in a global way the gain on MO and SO . Note that the gain for LR can
be negative when the minimization of MO and SO imposes to deteriorate sharply the quality of
the solution found by the greedy algorithm in term of logistic ratio. In both cases (LS-LR or LS-
LR′), the local-search heuristic improves drastically the quality of solutions provided by the greedy
algorithm. On instances of base A (for which the comparison between the greedy algorithm and
the local search is fair concerning the logistic ratio), the average gain obtained by LS-LR (resp.
LS-LR′) is of 29.2% (resp. 22.6%), and of 24.1% (resp. 20.0%) by considering the global logistic
ratio (that is, the sum of shift costs for all instances divided by the sum of delivered quantities for
all instances). This last measure is interesting but not completely fair, because all costs are not
always expressed according to the same currency unit; on the other hand, quantities are always
expressed in kilograms here. On Table 7, one can observe that gains on LR′ are correlated to gains
on LR; but important gains on LR′ are necessary to obtain some gains on LR comparable to
the ones obtained by LS-LR. A possible explanation is that the initial solutions computed by the
greedy algorithm are less optimized for LR′ than for LR (indeed, the goal of the greedy algorithm
is just to resolve missed orders and stockouts while minimizing SC).

Tables 6 and 8 gives more statistics on the solutions found by local search. The column “nb
shift” (resp. “nb oper”) of the tables reports the number of shifts (resp. operations) of the solution.
The column “avg oper” (resp. “avg deliv”, “avg load”, “avg layov”) reports the average number of
operations (resp. deliveries, loadings, layovers) per shift. Finally, the column “avg dur” (resp. “avg
dist”) reports the average traveled distance (resp. duration) per shift. One can observe that more
shifts and much more operations are included in both LS-LR and LS-LR′ solutions. On average,
the number of shifts (resp. operations) is increased of nearly 25% (resp. 50%). In this way, the
average number of operations per shift is increased from almost 4 to more than 6. The average
distance and duration of shifts are decreased slightly in the case of LS-LR, whereas these ones are
increased slightly in the case of LS-LR′.

6.2. Long-term benchmarks
The local-search algorithm has been also tested on long-term benchmarks, in particular for verifying
that optimizing the surrogate objective leads to better solutions on the long run. Some results are

Benoist et al.: Real-life inventory routing
26 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

presented for 5 real-life benchmarks, each one with 105 days. The operational planning process
is simulated as follows. The simulator starts at day 0 by computing a planning over the next 15
days, with 5 minutes as time limit. Then, only the shifts starting at the first day of this short-
term planning are fixed (the levels of plants or customers visited by these shifts are updated, the
resources operating on these shifts become unavailable) and the process is iterated the following
day.

The characteristics of these 5 benchmarks are presented on Table 11. The long-term solutions
found by the three heuristics (greedy, LS-LR, LS-LR′) include no missed orders. The complete
statistics are given for each heuristic on Tables 12, 13, and 14. The main remark is that the average
number of operations per shift is increased in local-search solutions. Indeed, the number of shifts in
local-search solutions is slightly smaller than in greedy solutions, whereas the number of operations
is increased. Besides, local-search solutions are characterized by a larger average traveled duration
per shift, thanks to an increased use of layovers. The average logistic ratios marked by an asterisk
are computed as the sum of shift costs for the 5 benchmarks divided by the sum of all delivered
quantities.

The gains obtained by LS-LR′ are reported on the right part of Table 11. The column “wst
1 mn” reports the worst LR gain in% obtained over the 5 runs for 1 minute of running time per
planning iteration. The column “avg 1 mn” (resp. “avg 5 mn”, “avg 1 h”) reports the average gain
in% for LR obtained by local search limited to 1 minute (resp. 5 minutes, 1 hour) of computa-
tion per planning iteration. Note that the solutions found by the greedy algorithm include some
stockouts. On average, the LR gain obtained by LS-LR′ with only 1 minute of running time per
planning iteration is of nearly 20% on average. More than providing high-quality solutions, these
statistics demonstrate that our local-search heuristic is robust and fast (with an exponential-inverse
convergence).

Solutions provided by logistic experts are reported on Table 16. Note that the comparison
between the experts and the three heuristics is not completely fair. Indeed, because finding solu-
tions with no stockout (with actual safety levels) was difficult and fastidious, experts were allowed
to modify the initial long-term benchmarks in order to provide solutions without missed order
and stockout. This could explain the negative gain of greedy algorithm on instances L1, L2, L4.
Moreover, the solution provided by experts for instance L2 is considered as a “best-effort” solution,
in the sense that many more time has been spent to optimize carefully the solution.

6.3. Impact of the surrogate objective
The key figures for comparing LS-LR and LS-LR′ are given on Table 10 (for short-term benchmarks)
and on the right part of Table 15 (for long-term benchmarks). “avg DQ” corresponds to the
average total delivered quantity, and “avg delivq” to the average delivered quantity (per operation).
On short-term benchmarks, the total delivered quantity in both LS-LR and LS-LR′ solutions is
increased by more than 50% on average. But note that the average quantity per delivery is increased
by almost 5% in LS-LR′ solutions compared to LS-LR solutions.

On long-term benchmarks, one shall observe that LS-LR′ aims at increasing the average quantity
per delivery, which results in better long-term solutions. On instances L1 (resp. L2), the augmen-
tation is of 21% (resp. 13%), leading to +8% (resp. +5%) of gain for LR. Moreover, LS-LR′ is
able to produce solutions without stockout on the instance L4, contrary to LS-LR. The values
marked by an asterisk on Tables 15 and 16 are computed globally, for the 5 benchmarks (as done
for logistic ratios on Tables 13 and 14).

The tables on the left part of Tables 3 and 15 gives lower bounds for SO and LR. The computation
of the lower bound SOmin for the number of stockouts is based on two basic observations. Some
stockouts appear at a customer if: the earliest date of arrival at the customer during opening hours
is greater than the date of the first stockout; the sum of consumptions of the customer during

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 27

Figure 9 A near-optimal IRP solution, with a majority of round-trips with full drops.

closed hours exceeds the capacity of its tank. The computation of LRmin is done as described in
Section 3.1. On Tables 3, 5, 7, an asterisk is set in the column SO if the value equals the lower
bound SOmin.

The logistic ratio obtained after local-search optimization remains far from the lower bound
LRmin (the gap is lower than 10% for only 3 instances B06, B20, B25). Figure 9 shows a near-
optimal solution obtained on instance B06, with a majority of round-trips with full drops. Never-
theless, the reader shall note that this bound has been obtained by relaxing strongly the constraints
of the problem (researches are planned in order to reinforce this lower bound).

7. Conclusion
Having introduced a real-life IRP problem encountered in a worldwide industry, two contributions
have been presented in this paper. First, a surrogate objective based on local lower bounds was
defined for ensuring a long-term optimization when building a planning over the short term. Then,
a local-search heuristic has been described for solving effectively and efficiently the real-life IRP
over the short term (15 days in full details), even when some large-scale instances (thousand sites,
hundred resources) are considered. An extensive computational study shows that our solution yields
long-term savings exceeding 20% on average compared to solutions built by expert planners or even
a classical urgency-based constructive algorithm. Since the promised long-term savings have been
confirmed in operations, a decision support system integrating this high-performance local-search
heuristic is going to be deployed worldwide.

New researches are still conducted in several directions:
• enlarging the scope of the IRP problem addressed in the paper (in particular, refining costs

and managing drivers’ desiderata);
• improving the existing local-search heuristic (adding transformations with larger neighbor-

hoods for speeding up convergence);
• reinforcing the global lower bound by integrating tours visiting several sites and constraints

on resources.

Benoist et al.: Real-life inventory routing
28 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

Another prospective, but promising, line of research is to proceed step by step toward a global
optimization of the supply chain, by tackling jointly the production and distribution problems and
finally by integrating purchasing issues. Indeed, we think that local-search approaches like the one
developed presently are best suited for solving such very large-scale problems.

References
Aarts, E., J. Lenstra, eds. 1997. Local Search in Combinatorial Optimization. Wiley-Interscience Series in

Discrete Mathematics and Optimization, John Wiley & Sons, Chichester, England.

Archetti, C., M. Savelsbergh. 2007. The truckload trip scheduling problem. TRISTAN VI, the 6th Triennial
Symposium on Transportation Analysis. Phuket Island, Thailand.

Bell, W., L. Dalberto, M. Fisher, A. Greenfield, R. Jaikumar, P. Kedia, R. Mack, P. Prutzman. 1983.
Improving the distribution of industrial gases with an on-line computerized routing and scheduling
optimizer. Interfaces 13(6) 4–23.

Benoist, T., B. Estellon, F. Gardi, A. Jeanjean. 2009. High-performance local search for solving inventory
routing problems. H. Hoos T. Stützle, M. Birattari, ed., SLS 2009, the 2nd International Workshop
on Engineering Stochastic Local Search Algorithms, Lecture Notes in Computer Science, vol. 5752.
Springer, 105–109.

Campbell, A., L. Clarke, A. Kleywegt, M. Savelsbergh. 1998. The inventory routing problem. T. Crainic,
G. Laporte, eds., Fleet Management and Logistics. Kluwer Academic Publishers, Norwell, MA, 95–113.

Campbell, A., L. Clarke, M. Savelsbergh. 2002. Inventory routing in practice. P. Toth, D. Viego, eds.,
The Vehicle Routing Problem. SIAM Monographs on Discrete Mathematics and Applications 9, SIAM,
Philadelphia, PA, 309–330.

Campbell, A., M. Savelsbergh. 2004a. A decomposition approach for the inventory-routing problem. Trans-
portation Sci. 38(4) 488–502.

Campbell, A., M. Savelsbergh. 2004b. Delivery volume optimization. Transportation Sci. 38(2) 210–223.

Campbell, A., M. Savelsbergh. 2004c. Efficient insertion heuristics for vehicle routing and scheduling prob-
lems. Transportation Sci. 38(3) 369–378.

Cormen, T., C. Leiserson, R. Rivest, C. Stein. 2004. Introduction à l’Algorithmique. Dunod, Paris, France.
French 2nd edition.

Estellon, B., F. Gardi, K. Nouioua. 2006. Large neighborhood improvements for solving car sequencing
problems. RAIRO Operations Research 40(4) 355–379.

Estellon, B., F. Gardi, K. Nouioua. 2008. Two local search approaches for solving real-life car sequencing
problems. Eur. J. Oper. Res. 191(3) 928–944.

Estellon, B., F. Gardi, K. Nouioua. 2009. High-performance local search for task scheduling with human
resource allocation. H. Hoos T. Stützle, M. Birattari, ed., SLS 2009, the 2nd International Workshop
on Engineering Stochastic Local Search Algorithms, Lecture Notes in Computer Science, vol. 5752.
Springer, 1–15.

Feo, T., G. Resende. 1995. Greedy randomized adaptive search procedures. Journal of Global Optimization
6(2) 109–133.

Lau, H., Q. Liu, H. Ono. 2002. Integrating local search and network flow to solve the inventory routing
problem. AAAI 2002, the 18th National Conference on Artificial Intelligence. AAAI Press, Menlo
Park, CA, 9–14.

Savelsbergh, M., J.-H. Song. 2007a. Inventory routing with continuous moves. Computers and Operations
Research 34(6) 1744–1763.

Savelsbergh, M., J.-H. Song. 2007b. Performance measurement for inventory routing. Transportation Sci.
41(1) 44–54.

Savelsbergh, M., J.-H. Song. 2008. An optimization algorithm for the inventory routing with continuous
moves. Computers and Operations Research 35(7) 2266–2282.

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 29

Solomon, M. 1987. Algorithms for the vehicle routing and scheduling problems with time window constraints.
Oper. Res. 35(2) 254–265.

Benoist et al.: Real-life inventory routing
30 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

Figure 10 The geographical view of an IRP solution (top) and of a “long” shift (18 operations: 10 deliveries, 8
loadings, 2 layovers) built by local search (bottom). Note that the customer 68 has stockouts.

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 31

Figure 11 The chronological view of the long shift of Figure 10 (left) and of the set of shifts performed by a
driver (right). Note that the second layover of the long shift was anticipated for waiting the opening
hours of a customer.

Benoist et al.: Real-life inventory routing
32 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

Figure 12 The inventory level at a customer over 15 days.

Note. The safety level is marked by the horizontal red line, and the days of the horizon by the vertical black lines.
All deliveries, which are marked by a rise in the inventory level, appear well during opening hours.

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 33

Table 2 Short-term benchmarks: characteristics and greedy results (statistics
on costs).

data customers plants bases drivers tractors trailers callins orders

A01 80 2 2 20 10 20 0 0
A02 108 1 1 35 18 35 0 0
A03 132 1 1 20 17 15 0 0
A04 130 2 1 17 10 20 0 0
A05 125 2 1 20 18 20 0 0
A06 46 1 2 50 50 50 0 0
A07 80 2 2 20 10 20 0 0
A08 75 1 1 10 10 10 0 0
A09 150 2 1 20 20 20 0 0
A10 250 5 1 30 30 30 0 0
A11 500 4 2 50 20 50 0 0
A12 108 1 1 35 18 32 0 0
A13 100 1 1 35 35 35 0 0
A14 70 1 1 50 5 10 0 0
A15 132 1 1 20 17 15 0 0
A16 130 2 1 17 10 20 0 0
A17 135 3 1 20 18 20 0 0

B01 500 4 2 50 40 50 0 0
B02 200 1 1 13 9 12 0 0
B03 100 1 1 35 35 35 0 0
B04 70 1 1 10 5 10 0 0
B05 135 3 1 20 18 20 0 0
B06 50 1 1 5 5 5 0 0
B07 200 1 1 13 9 12 0 0
B08 100 2 1 20 15 15 0 0
B09 124 2 1 20 18 20 0 0
B10 99 3 2 20 14 30 0 0
B11 75 1 1 10 10 10 0 0
B12 75 1 1 10 10 10 0 0
B13 75 1 1 10 10 10 0 0
B14 75 1 1 10 10 10 0 0
B15 198 3 1 10 10 8 0 0
B16 198 3 1 10 10 8 0 0
B17 198 3 1 10 10 8 0 0
B18 198 3 1 10 10 8 0 0
B19 50 1 1 5 5 5 0 0
B20 50 1 1 10 10 10 0 0
B21 50 1 1 5 5 5 0 0
B22 50 1 1 5 5 5 0 0
B23 50 1 1 5 5 5 0 0
B24 50 1 1 5 5 5 0 0
B25 50 1 1 5 5 5 0 0
B26 20 1 1 1 1 1 0 0
B27 99 3 1 20 20 20 0 0
B28 500 1 3 60 60 60 50 0
B29 500 1 3 60 60 60 50 0
B30 783 16 4 78 49 42 191 0
B31 1 500 50 50 100 100 100 0 0

C01 75 6 1 35 21 3 0 9
C02 75 6 1 34 21 3 0 4
C03 75 6 1 35 21 5 20 9
C04 75 6 1 35 21 5 20 2
C05 75 6 1 35 21 5 19 6
C06 75 6 1 35 21 5 19 6
C07 122 1 1 6 6 6 0 10
C08 122 1 1 6 6 6 0 15
C09 175 8 1 35 21 12 38 20
C10 175 8 1 31 21 12 38 28
C11 215 1 5 18 15 34 48 25
C12 272 17 9 57 27 27 265 616
C13 100 1 1 50 50 50 0 41

average 171 4 2 25 19 20 - -

Benoist et al.: Real-life inventory routing
34 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

data SOmin LRmin

A01 0 0.014 630
A02 0 0.009 551
A03 0 0.013 192
A04 0 0.039 239
A05 0 0.043 731
A06 0 0.031 722
A07 0 0.015 470
A08 0 0.194 255
A09 0 0.194 276
A10 0 0.147 122
A11 0 0.032 681
A12 0 0.010 978
A13 0 0.013 444
A14 0 0.016 950
A15 0 0.009 364
A16 0 0.048 491
A17 0 0.032 739
B01 45 0.006 406
B02 0 0.012 301
B03 16 0.009 767
B04 10 0.006 043
B05 21 0.040 597
B06 7 0.014 001
B07 0 0.009 816
B08 297 0.050 168
B09 7 0.047 395
B10 3 0.028 094
B11 0 0.157 607
B12 0 0.159 432
B13 12 0.159 432
B14 26 0.159 362
B15 0 0.060 412
B16 0 0.061 183
B17 0 0.060 412
B18 0 0.061 692
B19 278 0.006 026
B20 23 0.196 649
B21 0 0.036 080
B22 0 4.302 140
B23 0 0.036 080
B24 0 0.036 080
B25 0 2.895 112
B26 4 0.022 161
B27 0 0.078 626
B28 37 0.013 677
B29 37 0.013 677
B30 968 0.004 329
B31 47 0.057 477
C01 57 0.445 947
C02 57 0.411 399
C03 0 0.038 796
C04 37 0.027 532
C05 0 0.041 293
C06 0 0.042 624
C07 0 0.024 255
C08 140 0.023 984
C09 13 0.217 204
C10 13 0.223 018
C11 0 0.005 883
C12 0 0.900 584
C13 0 0.035 972

data MO SO SC DQ LR
A01 - 0 57 178 2 317 462 0.024 673
A02 - 0 64 472 3 534 883 0.018 239
A03 - 0 77 651 3 531 172 0.021 990
A04 - 0 202 829 2 951 746 0.068 715
A05 - 0 199 190 2 173 870 0.091 629
A06 - 0 172 410 1 095 217 0.157 421
A07 - 0 45 092 1 602 654 0.028 136
A08 - 0 307 783 875 106 0.351 710
A09 - 0 788 566 2 100 705 0.375 382
A10 - 0 1 310 183 3 758 893 0.348 556
A11 - 0 595 733 9 410 181 0.063 307
A12 - 0 89 696 5 020 209 0.017 867
A13 - 0 64 197 2 429 315 0.026 426
A14 - 0 41 885 1 468 461 0.028 523
A15 - 0 54 049 2 945 628 0.018 349
A16 - 0 376 060 3 070 358 0.122 481
A17 - 0 334 667 3 247 942 0.103 040
B01 - 51 196 307 13 909 999 0.014 113
B02 - 196 131 242 3 905 673 0.033 603
B03 - ∗16 160 038 13 809 196 0.011 589
B04 - ∗10 23 082 1 379 000 0.016 738
B05 - ∗25 291 179 3 583 893 0.081 247
B06 - 10 16 638 509 922 0.032 629
B07 - 58 84 933 3 565 791 0.023 819
B08 - 8 312 475 665 5 595 653 0.085 006
B09 - 55 362 308 3 227 554 0.112 255
B10 - ∗3 117 994 1 361 526 0.086 663
B11 - 3 293 817 742 473 0.395 728
B12 - 7 237 479 588 415 0.403 590
B13 - ∗12 277 024 586 285 0.472 508
B14 - 69 315 868 769 653 0.410 404
B15 - 7 600 471 325 1 619 909 0.290 958
B16 - 4 356 505 750 2 322 558 0.217 756
B17 - 8 802 405 570 1 213 195 0.334 299
B18 - 9 458 418 735 1 315 944 0.318 201
B19 - 6 971 10 822 46 100 0.234 751
B20 - 1 244 292 095 685 681 0.425 993
B21 - 262 55 080 631 287 0.087 250
B22 - 262 6 557 325 609 803 10.753 186
B23 - 357 60 865 612 436 0.099 382
B24 - 258 98 020 605 441 0.161 899
B25 - 265 3 723 050 572 758 6.500 215
B26 - 1 088 23 470 328 763 0.071 389
B27 - 927 529 644 1 038 549 0.509 985
B28 - 46 322 155 168 1 986 943 0.078 094
B29 - 46 298 149 518 1 986 944 0.075 250
B30 - 74 094 124 298 9 880 399 0.012 580
B31 - ∗47 4 206 864 33 035 582 0.127 343
C01 6 2 698 414 736 379 165 1.093 814
C02 3 819 258 656 251 252 1.029 469
C03 0 309 25 570 240 408 0.106 362
C04 0 ∗37 1 464 17 827 0.082 148
C05 0 31 30 147 244 708 0.123 194
C06 0 41 22 566 225 504 0.100 069
C07 0 1 789 366 799 214 009 1.713 942
C08 0 5 271 281 550 205 571 1.369 601
C09 0 1 290 1 043 204 1 972 743 0.528 809
C10 3 4 085 1 496 640 2 488 223 0.601 490
C11 1 10 449 24 271 1 317 292 0.018 425
C12 95 14 3 226 530 2 036 466 1.584 377
C13 4 5 318 221 965 3 610 200 0.061 483

Table 3 Short-term benchmarks: lower bounds (left) and greedy results (right).

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 35

Table 4 Short-term benchmarks: greedy results (statistics on shifts).

data nb shift nb oper avg oper avg deliv avg load avg layov avg dist avg dur

A01 98 433 2.4 1.4 1.1 0.2 179 316
A02 76 481 4.3 2.4 1.9 0.6 254 540
A03 86 573 4.7 2.5 2.1 0.0 273 415
A04 46 370 6.0 3.3 2.8 0.1 501 598
A05 51 335 4.6 2.6 2.0 0.1 417 549
A06 87 413 2.7 2.2 0.6 0.2 929 857
A07 61 316 3.2 1.8 1.4 0.0 227 381
A08 25 159 4.4 2.2 2.1 0.2 493 651
A09 47 341 5.3 2.8 2.4 0.3 699 920
A10 70 626 6.9 3.8 3.2 0.5 933 1 332
A11 116 1 183 8.2 4.5 3.7 0.2 545 776
A12 69 632 7.2 3.8 3.4 0.0 391 581
A13 66 451 4.8 3.0 1.8 0.0 430 542
A14 53 273 3.2 1.7 1.5 0.0 244 362
A15 109 570 3.2 1.8 1.5 0.0 146 272
A16 54 433 6.0 3.4 2.6 0.6 810 1 300
A17 52 463 6.9 3.8 3.1 0.5 720 1 113

B01 335 2 084 4.2 2.3 1.9 0.7 167 644
B02 125 780 4.2 2.4 1.8 0.6 321 594
B03 112 1 839 14.4 7.5 6.9 0.0 550 864
B04 48 246 3.1 1.7 1.4 0.0 141 259
B05 65 500 5.7 3.2 2.5 0.1 482 699
B06 23 105 2.6 1.4 1.1 0.0 225 312
B07 49 588 10.0 5.7 4.3 0.2 517 834
B08 151 958 4.3 2.3 2.0 0.0 245 380
B09 52 446 6.6 3.7 2.8 0.6 788 1 312
B10 46 226 2.9 2.0 0.9 0.1 400 475
B11 24 149 4.2 2.2 2.0 0.2 453 704
B12 22 127 3.8 2.0 1.8 0.1 425 574
B13 24 133 3.5 2.0 1.6 0.2 407 695
B14 29 175 4.0 2.3 1.7 0.3 398 770
B15 76 357 2.7 1.5 1.2 0.3 587 810
B16 79 446 3.6 1.9 1.7 0.3 602 817
B17 63 284 2.5 1.4 1.1 0.3 617 824
B18 78 313 2.0 1.1 1.0 0.2 498 729
B19 16 64 2.0 1.0 1.0 0.2 182 586
B20 65 691 8.6 4.3 4.3 0.4 239 925
B21 15 109 5.3 2.9 2.3 0.3 259 713
B22 12 97 6.1 3.4 2.7 0.4 319 887
B23 16 114 5.1 2.8 2.3 0.3 254 639
B24 16 108 4.8 2.6 2.2 0.4 238 802
B25 15 101 4.7 2.7 2.1 0.4 245 884
B26 18 71 1.9 1.0 0.9 0.1 36 254
B27 75 351 2.7 1.9 0.8 0.8 400 1 849
B28 63 207 1.3 1.3 0.0 0.0 398 458
B29 62 206 1.3 1.3 0.0 0.0 389 408
B30 307 1 184 1.9 1.0 0.8 0.0 197 417
B31 360 3 975 9.0 5.8 3.3 0.1 474 566

C01 28 112 2.0 1.1 0.9 0.3 452 833
C02 20 77 1.9 1.1 0.8 0.2 387 696
C03 20 78 1.9 1.2 0.8 0.2 379 705
C04 2 8 1.5 1.5 0.0 0.5 196 1 847
C05 14 75 2.7 1.7 1.0 0.7 638 1 356
C06 13 55 2.2 1.4 0.8 0.5 517 1 078
C07 63 252 2.0 1.0 1.0 0.2 260 577
C08 51 204 2.0 1.0 1.0 0.3 254 639
C09 84 406 2.8 1.6 1.2 0.2 298 683
C10 106 524 2.9 1.7 1.2 0.2 364 786
C11 58 279 2.8 1.8 1.0 0.0 348 568
C12 252 1 355 3.4 2.1 1.3 0.0 150 645
C13 70 450 4.4 2.6 1.8 0.0 321 433

average 72 475 4.2 2.4 1.8 0.2 397 722

Benoist et al.: Real-life inventory routing
36 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

Table 5 Short-term benchmarks: LS-LR results (statistics on costs).

data MO SO SC DQ LR gain GC gain LR

A01 - 0 61 347 3 140 722 0.019 533 20.8% 20.8%
A02 - 0 67 627 5 389 262 0.012 548 31.2% 31.2%
A03 - 0 75 443 4 617 278 0.016 339 25.7% 25.7%
A04 - 0 214 050 4 255 173 0.050 303 26.8% 26.8%
A05 - 0 187 720 3 130 162 0.059 971 34.5% 34.5%
A06 - 0 184 128 1 634 342 0.112 662 28.4% 28.4%
A07 - 0 49 354 2 357 186 0.020 938 25.6% 25.6%
A08 - 0 338 629 1 582 160 0.214 029 39.1% 39.1%
A09 - 0 981 784 3 666 094 0.267 801 28.7% 28.7%
A10 - 0 1 600 926 6 656 780 0.240 496 31.0% 31.0%
A11 - 0 729 420 15 765 833 0.046 266 26.9% 26.9%
A12 - 0 93 166 7 084 289 0.013 151 26.4% 26.4%
A13 - 0 61 572 3 012 796 0.020 437 22.7% 22.7%
A14 - 0 37 755 1 963 049 0.019 233 32.6% 32.6%
A15 - 0 47 438 3 824 474 0.012 404 32.4% 32.4%
A16 - 0 376 239 4 398 543 0.085 537 30.2% 30.2%
A17 - 0 356 575 5 135 668 0.069 431 32.6% 32.6%

B01 - 48 208 995 17 147 972 0.012 188 5.9% 13.6%
B02 - 69 132 251 4 654 644 0.028 413 64.7% 15.4%
B03 - ∗16 169 664 15 643 641 0.010 846 0.0% 6.4%
B04 - ∗10 17 700 1 853 051 0.009 552 0.7% 42.9%
B05 - ∗21 353 487 5 243 479 0.067 415 16.0% 17.0%
B06 - 10 14 348 958 772 0.014 965 13.3% 54.1%
B07 - 0 93 094 5 720 379 0.016 274 97.3% 31.7%
B08 - 1 152 690 985 9 136 192 0.075 632 86.1% 11.0%
B09 - ∗7 390 235 4 661 929 0.083 707 76.8% 25.4%
B10 - ∗3 120 401 2 367 933 0.050 846 30.7% 41.3%
B11 - 3 293 645 1 392 672 0.210 850 43.4% 46.7%
B12 - 7 245 273 1 217 519 0.201 453 42.7% 50.1%
B13 - ∗12 264 905 1 300 288 0.203 728 45.4% 56.9%
B14 - ∗26 346 686 1 592 901 0.217 645 56.6% 47.0%
B15 - 1 378 557 875 4 586 864 0.121 624 81.8% 58.2%
B16 - 834 535 275 4 374 700 0.122 357 80.7% 43.8%
B17 - 1 537 580 345 4 607 614 0.125 953 82.5% 62.3%
B18 - 2 580 522 365 3 664 172 0.142 560 72.7% 55.2%
B19 - 6 472 6 773 46 400 0.145 970 7.2% 37.8%
B20 - 374 392 495 1 872 138 0.209 651 69.9% 50.8%
B21 - 0 47 685 1 131 970 0.042 126 100.0% 51.7%
B22 - 0 6 438 345 1 157 627 5.561 675 84.9% 48.3%
B23 - 0 52 320 1 139 022 0.045 934 99.9% 53.8%
B24 - 0 126 960 1 204 818 0.105 377 99.6% 34.9%
B25 - 0 3 197 695 1 078 086 2.966 085 91.0% 54.4%
B26 - 137 24 405 816 473 0.029 891 87.2% 58.1%
B27 - 0 545 077 1 506 760 0.361 754 100.0% 29.1%
B28 - 28 834 336 092 1 986 943 0.169 150 37.8% -116.6%
B29 - 28 892 353 603 1 986 944 0.177 963 37.6% -136.5%
B30 - 15 659 141 026 15 978 096 0.008 826 78.9% 29.8%
B31 - ∗47 5 016 050 46 282 014 0.108 380 0.4% 14.9%

C01 3 530 639 297 563 692 1.134 125 72.3% -3.7%
C02 3 74 233 825 322 556 0.724 912 63.5% 29.6%
C03 0 0 33 215 533 379 0.062 273 99.8% 41.5%
C04 0 ∗37 2 901 87 268 0.033 239 1.3% 59.5%
C05 0 0 29 851 505 713 0.059 028 98.2% 52.1%
C06 0 0 24 280 466 894 0.052 003 98.8% 48.0%
C07 0 0 319 365 341 328 0.935 655 95.2% 45.4%
C08 0 2 407 266 655 350 180 0.761 480 54.1% 44.4%
C09 0 33 1 285 520 3 469 495 0.370 521 94.8% 29.9%
C10 0 149 2 063 977 5 304 062 0.389 131 95.8% 35.3%
C11 1 235 53 706 3 827 663 0.014 031 97.7% 23.8%
C12 89 0 3 020 317 2 114 443 1.428 422 6.5% 9.8%
C13 1 7 372 072 6 513 105 0.057 127 98.0% 7.1%

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 37

Table 6 Short-term benchmarks: LS-LR results (statistics on shifts).

data nb shift nb oper avg oper avg deliv avg load avg layov avg dist avg dur

A01 115 565 2.9 1.7 1.2 0.2 159 298
A02 135 790 3.9 2.1 1.7 0.2 143 342
A03 133 830 4.2 2.4 1.8 0.0 163 341
A04 54 503 7.3 4.1 3.3 0.0 416 528
A05 53 404 5.6 3.3 2.4 0.1 348 513
A06 102 523 3.1 2.4 0.7 0.1 795 751
A07 78 449 3.8 2.3 1.5 0.0 188 394
A08 25 254 8.2 4.4 3.8 0.1 490 677
A09 55 546 7.9 4.3 3.6 0.3 712 975
A10 83 994 10.0 5.3 4.6 0.5 895 1 360
A11 153 1 865 10.2 5.4 4.8 0.2 456 744
A12 138 988 5.2 2.7 2.4 0.0 194 380
A13 77 548 5.1 3.2 1.9 0.0 327 466
A14 81 398 2.9 1.6 1.3 0.0 138 302
A15 157 821 3.2 1.8 1.4 0.0 81 246
A16 61 586 7.6 4.4 3.2 0.5 673 1 172
A17 60 659 9.0 5.0 4.0 0.4 617 1 008

B01 386 2 506 4.5 2.4 2.1 0.7 150 638
B02 164 986 4.0 2.3 1.7 0.4 242 488
B03 154 2 140 11.9 6.2 5.7 0.0 403 685
B04 69 357 3.2 1.8 1.4 0.0 66 228
B05 89 736 6.3 3.6 2.6 0.3 388 739
B06 35 188 3.4 2.0 1.4 0.0 116 295
B07 82 993 10.1 5.8 4.3 0.2 317 700
B08 229 1 534 4.7 2.5 2.2 0.0 234 364
B09 58 607 8.5 4.8 3.7 0.5 736 1 193
B10 53 353 4.7 2.9 1.8 0.1 315 462
B11 25 237 7.5 4.1 3.4 0.1 398 596
B12 24 209 6.7 3.7 3.0 0.0 335 487
B13 24 224 7.3 4.0 3.3 0.0 365 525
B14 32 271 6.5 3.7 2.8 0.2 354 664
B15 84 773 7.2 4.1 3.1 0.2 600 843
B16 91 760 6.4 3.6 2.8 0.2 525 739
B17 86 790 7.2 4.1 3.1 0.2 612 847
B18 72 647 7.0 4.1 2.9 0.3 669 908
B19 13 61 2.7 1.5 1.2 0.2 199 420
B20 71 1 580 20.3 10.1 10.1 0.3 274 985
B21 11 161 12.6 7.0 5.6 0.2 283 712
B22 9 156 15.3 8.3 7.0 0.3 378 916
B23 11 164 12.9 7.0 5.9 0.3 294 790
B24 12 165 11.8 6.3 5.5 0.2 297 679
B25 16 189 9.8 6.2 3.6 0.6 197 1 086
B26 7 111 13.9 7.4 6.4 0.0 162 528
B27 78 439 3.6 2.7 0.9 0.7 346 1 937
B28 102 570 3.6 3.6 0.0 0.2 492 666
B29 101 591 3.9 3.7 0.1 0.3 511 795
B30 300 1 529 3.1 2.0 1.1 0.0 206 500
B31 531 5 402 8.2 5.0 3.2 0.1 358 461

C01 29 173 4.0 2.7 1.3 0.7 649 1 451
C02 14 81 3.8 2.6 1.1 0.4 464 981
C03 24 115 2.8 1.8 1.0 0.3 397 935
C04 6 23 1.7 1.3 0.3 0.0 129 268
C05 21 120 3.3 2.2 1.0 0.4 401 934
C06 19 100 3.2 2.2 1.0 0.3 357 862
C07 65 354 3.4 1.7 1.7 0.1 360 585
C08 43 265 4.2 2.1 2.0 0.2 398 771
C09 99 588 3.9 2.4 1.6 0.2 254 737
C10 156 926 3.9 2.4 1.5 0.1 273 690
C11 114 704 4.2 2.7 1.5 0.1 383 738
C12 256 1 389 3.4 2.2 1.2 0.0 138 706
C13 215 1 051 2.9 1.7 1.2 0.0 144 282

average 93 706 6.3 3.6 2.7 0.2 360 694

Benoist et al.: Real-life inventory routing
38 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

Table 7 Short-term benchmarks: LS-LR′ results (statistics on costs).

data MO SO SC DQ LR gain GC gain LR′ gain LR

A01 - 0 72 227 3 392 822 0.021 288 13.7 % 37.3% 13.7%
A02 - 0 72 213 5 383 578 0.013 414 26.5 % 50.1% 26.5%
A03 - 0 96 672 5 112 877 0.018 908 14.0 % 28.5% 14.0%
A04 - 0 231 448 4 299 676 0.053 829 21.7 % 51.1% 21.7%
A05 - 0 205 122 3 218 972 0.063 723 30.5 % 65.6% 30.5%
A06 - 0 191 645 1 647 962 0.116 292 26.1 % 33.5% 26.1%
A07 - 0 55 130 2 465 328 0.022 362 20.5 % 47.7% 20.5%
A08 - 0 346 527 1 397 463 0.247 969 29.5 % 51.9% 29.5%
A09 - 0 1 055 789 3 906 338 0.270 276 28.0 % 54.5% 28.0%
A10 - 0 1 881 203 7 387 093 0.254 661 26.9 % 49.8% 26.9%
A11 - 0 817 071 16 925 051 0.048 276 23.7 % 51.2% 23.7%
A12 - 0 116 102 7 513 201 0.015 453 13.5 % 33.4% 13.5%
A13 - 0 67 251 3 174 802 0.021 183 19.8 % 41.1% 19.8%
A14 - 0 56 302 2 317 519 0.024 294 14.8 % 40.7% 14.8%
A15 - 0 68 054 4 395 307 0.015 483 15.6 % 36.8% 15.6%
A16 - 0 423 711 4 807 925 0.088 128 28.0 % 49.7% 28.0%
A17 - 0 377 020 5 298 991 0.071 149 30.9 % 48.7% 30.9%

B01 - 49 204 693 15 950 475 0.012 833 3.9 % 16.3% 9.1%
B02 - 70 132 788 4 660 904 0.028 490 64.3 % 21.3% 15.2%
B03 - ∗16 169 280 15 211 761 0.011 128 0.0 % 15.9% 4.0%
B04 - ∗10 32 526 2 084 416 0.015 604 0.2 % 43.9% 6.8%
B05 - ∗21 398 876 5 606 842 0.071 141 16.1 % 24.7% 12.4%
B06 - 10 27 538 1 301 185 0.021 164 5.2 % 66.3% 35.1%
B07 - 0 103 538 5 930 657 0.017 458 99.1 % 41.7% 26.7%
B08 - 1 172 687 755 9 030 922 0.076 156 85.9 % 22.7% 10.4%
B09 - ∗7 431 889 4 937 110 0.087 478 82.9 % 41.3% 22.1%
B10 - ∗3 143 157 2 613 767 0.054 770 37.5 % 59.1% 36.8%
B11 - 3 365 400 1 550 112 0.235 725 52.7 % 62.6% 40.4%
B12 - 7 279 055 1 217 253 0.229 250 43.4 % 62.5% 43.2%
B13 - ∗12 347 743 1 499 034 0.231 978 50.8 % 76.8% 50.9%
B14 - ∗26 458 784 1 906 122 0.240 690 63.6 % 68.1% 41.4%
B15 - 1 549 600 530 4 900 575 0.122 543 79.6 % 71.8% 57.9%
B16 - 841 555 560 4 406 363 0.126 081 80.6 % 60.8% 42.1%
B17 - 1 508 572 385 4 583 682 0.124 875 82.8 % 75.6% 62.6%
B18 - 2 648 511 925 3 639 688 0.140 651 72.0 % 68.4% 55.8%
B19 - 6 472 7 028 46 400 0.151 466 7.2 % 35.3% 35.5%
B20 - 374 356 665 1 595 901 0.223 488 69.9 % 66.7% 47.5%
B21 - 0 64 315 1 253 926 0.051 291 100.0 % 72.2% 41.2%
B22 - 0 8 364 065 1 342 321 6.231 047 95.3 % 70.0% 42.1%
B23 - 0 62 915 1 175 160 0.053 537 100.0 % 75.4% 46.1%
B24 - 0 157 870 1 380 915 0.114 323 99.7 % 39.0% 29.4%
B25 - 0 6 190 560 1 491 728 4.149 925 99.3 % 83.0% 36.2%
B26 - 137 31 785 847 726 0.037 494 87.4 % 83.1% 47.5%
B27 - 0 555 017 1 530 477 0.362 643 100.0 % 34.2% 28.9%
B28 - 28 846 344 463 1 986 943 0.173 363 37.7 % -147.5% -122.0%
B29 - 28 831 338 685 1 986 944 0.170 455 37.7 % -156.5% -126.5%
B30 - 15 354 154 313 16 925 694 0.009 117 79.3 % 37.5% 27.5%
B31 - ∗47 5 036 543 45 573 555 0.110 515 0.3 % 20.0% 13.2%

C01 3 611 650 584 562 753 1.156 073 70.8 % -22.8% -5.7%
C02 3 82 264 592 303 151 0.872 806 63.7 % 14.7% 15.2%
C03 0 0 37 177 511 392 0.072 698 99.9 % 61.7% 31.7%
C04 0 ∗37 13 535 199 939 0.067 696 1.1 % 83.8% 17.6%
C05 0 0 44 035 594 459 0.074 075 99.7 % 80.3% 39.9%
C06 0 0 42 185 556 139 0.075 854 99.8 % 78.3% 24.2%
C07 0 0 350 576 348 089 1.007 144 95.0 % 41.9% 41.2%
C08 0 2 383 267 431 350 192 0.763 669 54.6 % 45.2% 44.2%
C09 0 33 1 275 703 3 418 723 0.373 152 96.4 % 49.3% 29.4%
C10 0 147 1 989 237 5 155 110 0.385 877 96.3 % 54.1% 35.8%
C11 1 340 52 607 3 513 443 0.014 973 96.7 % 41.5% 18.7%
C12 89 0 3 009 688 2 104 364 1.430 213 6.5 % 10.5% 9.7%
C13 1 9 420 256 7 116 669 0.059 052 98.1 % -8.3% 4.0%

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 39

Table 8 Short-term benchmarks: LS-LR′ results (statistics on shifts).

data nb shift nb oper avg oper avg deliv avg load avg layov avg dist avg dur

A01 128 599 2.7 1.5 1.2 0.1 171 286
A02 103 709 4.9 2.6 2.3 0.4 203 457
A03 117 799 4.8 2.6 2.2 0.0 246 413
A04 46 474 8.3 4.4 3.9 0.1 557 694
A05 46 391 6.5 3.8 2.7 0.1 460 670
A06 101 521 3.2 2.4 0.8 0.1 847 797
A07 88 465 3.3 1.9 1.4 0.0 189 363
A08 19 212 9.2 4.6 4.5 0.1 745 909
A09 52 549 8.6 4.6 4.0 0.3 835 1 116
A10 91 1 083 9.9 5.2 4.7 0.5 991 1 457
A11 160 1 966 10.3 5.4 4.9 0.1 506 766
A12 101 921 7.1 3.7 3.5 0.0 341 559
A13 70 552 5.9 3.7 2.2 0.0 405 556
A14 82 422 3.1 1.7 1.5 0.0 210 356
A15 151 816 3.4 1.8 1.6 0.0 130 281
A16 61 618 8.1 4.6 3.5 0.5 775 1 228
A17 58 671 9.6 5.2 4.3 0.4 684 1 134

B01 357 2 310 4.5 2.4 2.1 0.7 161 651
B02 136 931 4.8 2.7 2.1 0.6 293 603
B03 110 1 987 16.1 8.3 7.8 0.0 587 935
B04 65 351 3.4 1.8 1.6 0.0 146 278
B05 84 748 6.9 3.8 3.1 0.3 485 869
B06 40 223 3.6 2.0 1.6 0.0 208 374
B07 69 942 11.7 6.4 5.2 0.2 430 867
B08 225 1 512 4.7 2.5 2.2 0.0 240 366
B09 65 651 8.0 4.5 3.5 0.6 732 1 225
B10 68 406 4.0 2.4 1.5 0.1 295 416
B11 24 245 8.2 4.3 3.9 0.2 579 815
B12 21 199 7.5 3.9 3.6 0.0 496 659
B13 22 236 8.7 4.6 4.1 0.1 601 833
B14 28 289 8.3 4.4 3.9 0.4 617 1 036
B15 82 808 7.9 4.4 3.4 0.3 662 961
B16 94 768 6.2 3.5 2.7 0.2 530 741
B17 84 763 7.1 4.0 3.1 0.2 623 834
B18 72 638 6.9 3.9 3.0 0.3 655 891
B19 16 67 2.2 1.3 0.9 0.1 165 356
B20 59 1 312 20.2 10.1 10.1 0.3 335 1 008
B21 14 178 10.7 5.8 4.9 0.1 340 671
B22 10 182 16.2 8.6 7.6 0.4 513 1 073
B23 13 164 10.6 5.7 4.9 0.2 351 657
B24 11 177 14.1 7.4 6.7 0.5 560 1 149
B25 19 230 10.1 5.7 4.4 0.5 322 1 051
B26 7 112 14.0 7.6 6.4 0.0 280 621
B27 74 436 3.9 2.9 1.0 0.9 360 2 026
B28 105 582 3.5 3.5 0.0 0.2 486 666
B29 99 576 3.8 3.7 0.1 0.2 494 795
B30 317 1 630 3.1 2.0 1.1 0.0 215 516
B31 479 5 110 8.7 5.3 3.4 0.1 414 507

C01 27 165 4.1 2.8 1.3 0.8 714 1 613
C02 26 101 1.9 1.2 0.7 0.1 282 531
C03 28 118 2.2 1.4 0.9 0.3 388 877
C04 9 39 2.2 1.4 0.8 0.3 445 1 012
C05 21 121 3.3 2.1 1.2 0.6 614 1 413
C06 21 103 2.9 1.8 1.1 0.6 592 1 246
C07 65 356 3.5 1.7 1.7 0.1 378 634
C08 42 257 4.1 2.1 2.0 0.3 422 826
C09 99 579 3.8 2.3 1.5 0.2 255 722
C10 149 889 4.0 2.4 1.6 0.1 273 697
C11 106 665 4.3 3.0 1.3 0.2 401 807
C12 255 1 375 3.4 2.2 1.2 0.0 138 699
C13 225 1 094 2.9 1.7 1.2 0.0 165 293

average 89 695 6.6 3.7 2.9 0.2 435 785

Benoist et al.: Real-life inventory routing
40 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

data attempt accept improve
A01 11.175 M 483 840 4.3% 497 0.4 h%
A02 5.726 M 373 977 6.5% 1 035 1.8 h%
A03 5.689 M 305 816 5.4% 923 1.6 h%
A04 6.786 M 247 082 3.6% 983 1.4 h%
A05 12.877 M 436 890 3.4% 1 001 0.8 h%
A06 16.167 M 637 190 3.9% 787 0.5 h%
A07 8.552 M 540 443 6.3% 706 0.8 h%
A08 7.898 M 394 354 5.0% 593 0.8 h%
A09 8.912 M 301 540 3.4% 845 0.9 h%
A10 7.909 M 203 519 2.6% 1 467 1.9 h%
A11 4.896 M 141 962 2.9% 2 067 4.2 h%
A12 4.867 M 322 731 6.6% 1 068 2.2 h%
A13 8.916 M 376 197 4.2% 821 0.9 h%
A14 10.698 M 705 213 6.6% 516 0.5 h%
A15 5.057 M 332 914 6.6% 703 1.4 h%
A16 10.776 M 347 633 3.2% 917 0.9 h%
A17 9.237 M 260 568 2.8% 1 002 1.1 h%
B01 4.118 M 42 669 1.0% 1 236 3.0 h%
B02 5.190 M 379 446 7.3% 1 288 2.5 h%
B03 1.972 M 42 669 2.2% 570 2.9 h%
B04 12.925 M 204 149 1.6% 447 0.3 h%
B05 6.461 M 631 576 9.8% 2 024 3.1 h%
B06 25.769 M 304 123 1.2% 325 0.1 h%
B07 3.992 M 175 528 4.4% 2 547 6.4 h%
B08 4.822 M 294 494 6.1% 2 044 4.2 h%
B09 7.446 M 715 529 9.6% 1 649 2.2 h%
B10 46.834 M 384 442 0.8% 655 0.1 h%
B11 21.861 M 144 446 0.7% 461 0.2 h%
B12 21.920 M 196 947 0.9% 694 0.3 h%
B13 23.449 M 183 145 0.8% 516 0.2 h%
B14 5.976 M 959 724 16.1% 906 1.5 h%
B15 9.509 M 695 514 7.3% 2 178 2.3 h%
B16 8.041 M 651 256 8.1% 1 467 1.8 h%
B17 9.738 M 782 531 8.0% 2 048 2.1 h%
B18 13.478 M 772 540 5.7% 1 665 1.2 h%
B19 19.563 M 1 859 210 9.5% 188 0.1 h%
B20 3.024 M 411 119 13.6% 1 136 3.8 h%
B21 10.806 M 470 509 4.4% 645 0.6 h%
B22 10.262 M 414 098 4.0% 566 0.6 h%
B23 10.359 M 449 538 4.3% 718 0.7 h%
B24 10.229 M 481 571 4.7% 628 0.6 h%
B25 11.157 M 1 349 731 12.1% 887 0.8 h%
B26 9.502 M 1 235 342 13.0% 311 0.3 h%
B27 33.932 M 740 801 2.2% 839 0.2 h%
B28 14.570 M 924 970 6.3% 2 449 1.7 h%
B29 11.249 M 677 473 6.0% 2 940 2.6 h%
B30 12.115 M 607 763 5.0% 5 337 4.4 h%
B31 1.952 M 22 282 1.1% 2 594 13.3 h%
C01 21.673 M 780 970 3.6% 539 0.2 h%
C02 26.518 M 2 010 675 7.6% 337 0.1 h%
C03 44.361 M 1 405 911 3.2% 221 0.1 h%
C04 298.345 M 919 179 0.3% 49 0.0 h%
C05 29.659 M 1 593 056 5.4% 268 0.1 h%
C06 27.087 M 1 175 693 4.3% 237 0.1 h%
C07 15.622 M 955 990 6.1% 647 0.4 h%
C08 24.908 M 1 966 737 7.9% 533 0.2 h%
C09 12.472 M 969 246 7.8% 1 069 0.9 h%
C10 8.345 M 652 189 7.8% 2 113 2.5 h%
C11 9.913 M 758 558 7.7% 1 782 1.8 h%
C12 21.907 M 682 664 3.1% 607 0.3 h%
C13 5.876 M 582 395 9.9% 3 855 6.6 h%

average∗ 13.112 M 619 185 5.5% 1 168 1.7 h%

data attempt accept improve
A01 9.704 M 372 849 3.8% 506 0.5 h%
A02 5.288 M 323 798 6.1% 1 292 2.4 h%
A03 4.564 M 228 900 5.0% 716 1.6 h%
A04 6.914 M 185 590 2.7% 710 1.0 h%
A05 11.190 M 313 239 2.8% 1 315 1.2 h%
A06 15.184 M 488 048 3.2% 814 0.5 h%
A07 9.844 M 536 327 5.4% 690 0.7 h%
A08 8.437 M 439 519 5.2% 389 0.5 h%
A09 8.126 M 263 955 3.2% 773 1.0 h%
A10 7.001 M 167 872 2.4% 1 438 2.1 h%
A11 4.287 M 117 333 2.7% 2 218 5.2 h%
A12 3.706 M 251 338 6.8% 1 238 3.3 h%
A13 8.096 M 271 741 3.4% 877 1.1 h%
A14 7.758 M 452 062 5.8% 434 0.6 h%
A15 4.324 M 278 738 6.4% 668 1.5 h%
A16 10.093 M 260 081 2.6% 1 043 1.0 h%
A17 8.599 M 210 142 2.4% 968 1.1 h%
B01 4.316 M 43 458 1.0% 934 2.2 h%
B02 5.252 M 380 335 7.2% 2 241 4.3 h%
B03 2.127 M 48 612 2.3% 332 1.6 h%
B04 13.186 M 213 735 1.6% 305 0.2 h%
B05 6.522 M 645 239 9.9% 2 289 3.5 h%
B06 24.905 M 319 034 1.3% 371 0.1 h%
B07 3.833 M 153 680 4.0% 2 905 7.6 h%
B08 4.357 M 272 632 6.3% 2 033 4.7 h%
B09 7.179 M 687 065 9.6% 1 866 2.6 h%
B10 46.760 M 323 324 0.7% 650 0.1 h%
B11 21.805 M 138 727 0.6% 307 0.1 h%
B12 22.693 M 192 329 0.8% 444 0.2 h%
B13 23.179 M 155 999 0.7% 447 0.2 h%
B14 6.190 M 967 508 15.6% 1 044 1.7 h%
B15 10.292 M 712 879 6.9% 2 039 2.0 h%
B16 8.429 M 678 137 8.0% 1 484 1.8 h%
B17 9.777 M 754 940 7.7% 2 377 2.4 h%
B18 13.651 M 744 369 5.5% 1 828 1.3 h%
B19 19.429 M 1 874 974 9.7% 217 0.1 h%
B20 3.189 M 429 622 13.5% 1 003 3.1 h%
B21 12.828 M 486 984 3.8% 552 0.4 h%
B22 9.598 M 360 746 3.8% 557 0.6 h%
B23 12.057 M 518 152 4.3% 519 0.4 h%
B24 9.442 M 367 871 3.9% 725 0.8 h%
B25 9.447 M 1 341 553 14.2% 1 120 1.2 h%
B26 9.398 M 1 247 208 13.3% 272 0.3 h%
B27 31.473 M 499 668 1.6% 983 0.3 h%
B28 15.499 M 917 257 5.9% 2 477 1.6 h%
B29 12.007 M 657 253 5.5% 3 187 2.7 h%
B30 11.793 M 552 206 4.7% 5 751 4.9 h%
B31 1.879 M 17 957 1.0% 2 297 12.2 h%
C01 22.068 M 785 592 3.6% 525 0.2 h%
C02 31.398 M 2 027 068 6.5% 323 0.1 h%
C03 56.408 M 1 390 099 2.5% 181 0.0 h%
C04 264.322 M 887 057 0.3% 43 0.0 h%
C05 28.102 M 1 127 520 4.0% 291 0.1 h%
C06 27.010 M 1 539 526 5.7% 186 0.1 h%
C07 14.234 M 861 659 6.1% 690 0.5 h%
C08 24.957 M 1 965 849 7.9% 467 0.2 h%
C09 11.885 M 883 356 7.4% 1 203 1.0 h%
C10 7.653 M 592 909 7.7% 2 172 2.8 h%
C11 9.839 M 681 057 6.9% 1 990 2.0 h%
C12 20.623 M 623 018 3.0% 644 0.3 h%
C13 5.699 M 564 609 9.9% 4 320 7.6 h%

average∗ 13.091 M 581 787 5.3% 1 211 1.8 h%

Table 9 Short-term benchmarks: statistics on transformations for LS-LR (left) and LS-LR′ (right) optimization.
M = million, h% = one-hundredths percent.

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 41

Table 10 Short-term benchmarks: statistics on volumes.

data avg DQ greedy avg DQ LS-LR avg DQ LS-LR′ avg delivq greedy avg delivq LS-LR avg delivq LS-LR′

A 3 031 400 4 565 518 4 861 465 15 992 16 066 17 073
A+B+C 2 897 779 4 398 780 4 517 178 16 770 13 139 13 718

Table 11 Long-term benchmarks: characteristics and LR gains with different time limits.

data customers plants bases drivers tractors trailers callins orders wst 1 mn avg 1 mn avg 5 mn avg 1 h

L1 75 6 1 35 21 5 19 56 23.8% 24.6% 26.3% 26.5%
L2 75 6 1 35 21 5 20 55 22.3% 23.5% 24.9% 25.2%
L3 175 8 1 35 21 12 36 189 5.2% 5.8% 8.3% 11.2%
L4 165 4 1 24 11 7 33 167 9.9% 11.2% 14.0% 18.9%
L5 198 8 7 12 12 12 3 40 32.5% 34.2% 35.7% 35.9%

average 138 6 2 28 17 8 22 101 18.7% 19.9% 21.8% 23.5%

Table 12 Long-term benchmarks: greedy results.

data SO SC DQ LR nb shift nb oper avg oper avg deliv avg load avg layov avg dist avg dur

L1 652 406 443 3 767 868 0.107 871 189 503 2.7 1.6 1.0 0.6 640 1 320
L2 146 407 379 3 827 560 0.106 433 196 506 2.6 1.6 1.0 0.5 619 1 235
L3 86 1 092 976 31 989 357 0.034 167 790 3 584 4.5 2.7 1.8 0.2 366 954
L4 257 808 887 18 433 289 0.043 882 590 2 249 3.8 2.4 1.4 0.2 395 844
L5 85 145 339 8 830 708 0.016 458 295 1 020 3.5 1.9 1.5 1.2 598 1 760

average 245 572 205 13 369 756 ∗0.042 798 412 1 572 3.4 2.0 1.3 0.5 524 1 223

Table 13 Long-term benchmarks: LS-LR results.

data SO SC DQ LR nb shift nb oper avg oper avg deliv avg load avg layov avg dist avg dur

L1 0 340 767 3 840 502 0.088 730 137 590 4.3 3.0 1.3 0.8 721 1 618
L2 0 335 661 3 899 780 0.086 072 148 570 3.9 2.7 1.2 0.7 660 1 445
L3 0 1 019 292 32 079 238 0.031 774 839 3 570 4.3 2.6 1.7 0.2 317 873
L4 17 697 009 18 694 845 0.037 283 605 2 400 4.0 2.6 1.4 0.2 321 735
L5 0 106 326 9 475 562 0.011 221 110 1 324 12.0 7.8 4.3 3.2 1 256 4 286

average 3 499 811 13 597 985 ∗0.036 756 368 1 691 5.7 3.7 2.0 1.0 655 1 792

Table 14 Long-term benchmarks: LS-LR′ results.

data SO SC DQ LR nb shift nb oper avg oper avg deliv avg load avg layov avg dist avg dur

L1 0 321 449 4 045 989 0.079 449 148 542 3.7 2.4 1.3 0.7 632 1 403
L2 0 321 207 4 016 621 0.079 969 140 541 3.9 2.6 1.3 0.7 669 1 471
L3 0 1 012 191 32 320 180 0.031 318 807 3 583 4.4 2.7 1.8 0.2 327 890
L4 0 701 139 18 587 949 0.037 720 602 2 396 4.0 2.6 1.4 0.2 325 744
L5 0 101 913 9 630 979 0.010 582 138 1 352 9.8 6.3 3.5 2.2 945 3 159

average 0 491 580 13 720 344 ∗0.035 829 367 1 683 5.2 3.3 1.9 0.8 580 1 533

Table 15 Long-term benchmarks: lower bounds (left) and gains obtained by local search against greedy
(right).

data LRmin data gain LS-LR gain LS-LR′ avg delivq greedy avg delivq LS-LR avg delivq LS-LR′

L1 0.061 025 L1 17.7% 26.3% 12 460 9 344 11 391
L2 0.059 855 L2 19.1% 24.9% 12 205 9 759 11 035
L3 0.019 176 L3 7.0% 8.3% 14 997 14 706 14 833
L4 0.012 256 L4 15.0% 14.0% 13 018 11 885 11 876
L5 0.005 576 L5 31.8% 35.7% 15 755 11 044 11 078

average ∗14.1% ∗16.3% ∗14 146 ∗12 537 ∗12 864

Table 16 Long-term benchmarks: gains obtained by local search against logistic experts.

data SO SC DQ LR gain greedy gain LS-LR gain LS-LR′

L1 0 378 778 3 725 847 0.101 662 -6.1% 12.7% 21.9%
L2 0 328 364 3 567 370 0.092 047 -15.6% 6.5% 13.1%
L3 0 1 257 354 32 667 576 0.038 489 11.2% 17.4% 18.6%
L4 0 788 893 18 683 473 0.042 224 -3.9% 11.7% 10.7%
L5 0 290 921 10 398 050 0.027 978 41.2% 59.9% 62.2%

average 0 608 862 13 808 463 ∗0.044 093 ∗2.9% ∗16.6% ∗18.7%

Benoist et al.: Real-life inventory routing
42 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

Table 17 The pools TMO and TSO of transformations.

TMO TSO

OperationDeletionBackwardBlockPropag OperationDeletionBackwardBlockPropag
OperationDeletionForwardBlockPropag OperationDeletionForwardBlockPropag
OperationInsertionOrderBackwardPropag OperationInsertionCustomerRunoutBackwardBlockPropag
OperationInsertionOrderForwardPropag OperationInsertionCustomerRunoutForwardBlockPropag
OperationInsertionSourceOrderBackwardPropag OperationInsertionSourceCustomerRunoutBackwardBlockPropag
OperationInsertionSourceOrderForwardPropag OperationInsertionSourceCustomerRunoutForwardBlockPropag
OperationEjectionCustomerNearBackwardBlockPropag OperationEjectionCustomerNearBackwardBlockPropag
OperationEjectionCustomerNearForwardBlockPropag OperationEjectionCustomerNearForwardBlockPropag
OperationEjectionSourceNearBackwardBlockPropag OperationEjectionSourceNearBackwardBlockPropag
OperationEjectionSourceNearForwardBlockPropag OperationEjectionSourceNearForwardBlockPropag
OperationEjectionOrderBackwardBlockPropag OperationEjectionRunoutBackwardBlockPropag
OperationEjectionOrderForwardBlockPropag OperationEjectionRunoutForwardBlockPropag
OperationMoveBetweenShiftsBackwardBackwardBlockPropag OperationMoveBetweenShiftsBackwardBackwardBlockPropag
OperationMoveBetweenShiftsBackwardForwardBlockPropag OperationMoveBetweenShiftsBackwardForwardBlockPropag
OperationMoveBetweenShiftsForwardBackwardBlockPropag OperationMoveBetweenShiftsForwardBackwardBlockPropag
OperationMoveBetweenShiftsForwardForwardBlockPropag OperationMoveBetweenShiftsForwardForwardBlockPropag
OperationMoveInsideShiftBeforeBackwardBlockPropag OperationMoveInsideShiftBeforeBackwardBlockPropag
OperationMoveInsideShiftBeforeForwardBlockPropag OperationMoveInsideShiftBeforeForwardBlockPropag
OperationMoveInsideShiftAfterBackwardBlockPropag OperationMoveInsideShiftAfterBackwardBlockPropag
OperationMoveInsideShiftAfterForwardBlockPropag OperationMoveInsideShiftAfterForwardBlockPropag
OperationSwapBetweenShiftsBackwardBackwardBlockPropag OperationSwapBetweenShiftsBackwardBackwardBlockPropag
OperationSwapBetweenShiftsBackwardForwardBlockPropag OperationSwapBetweenShiftsBackwardForwardBlockPropag
OperationSwapBetweenShiftsForwardBackwardBlockPropag OperationSwapBetweenShiftsForwardBackwardBlockPropag
OperationSwapBetweenShiftsForwardForwardBlockPropag OperationSwapBetweenShiftsForwardForwardBlockPropag
OperationSwapInsideShiftBackwardBlockPropag OperationSwapInsideShiftBackwardBlockPropag
OperationSwapInsideShiftForwardBlockPropag OperationSwapInsideShiftForwardBlockPropag
OperationMirrorInsideShiftBackwardBlockPropag OperationMirrorInsideShiftBackwardBlockPropag
OperationMirrorInsideShiftForwardBlockPropag OperationMirrorInsideShiftForwardBlockPropag
ShiftSlidingBackward ShiftSlidingBackward
ShiftSlidingForward ShiftSlidingForward
ShiftSlidingOrderBackward ShiftSlidingRunoutBackward
ShiftSlidingOrderForward ShiftSlidingRunoutForward
ShiftSlidingUnsatOrderBackward ShiftSlidingFirstRunoutBackward
ShiftSlidingUnsatOrderForward ShiftSlidingFirstRunoutForward
ShiftResourcesChangingBackward ShiftResourcesChangingBackward
ShiftResourcesChangingForward ShiftResourcesChangingForward
ShiftDeletion ShiftDeletion
ShiftInsertionOrderBackwardPropag ShiftInsertionCustomerFirstRunoutBackwardPropag
ShiftInsertionOrderForwardPropag ShiftInsertionCustomerFirstRunoutForwardPropag
ShiftInsertionSourceOrderBackwardPropag ShiftInsertionSourceCustomerRunoutBackwardPropag
ShiftInsertionSourceOrderForwardPropag ShiftInsertionSourceCustomerRunoutForwardPropag
ShiftMoveBackward ShiftInsertionSourceCustomerFirstRunoutBackwardPropag
ShiftMoveForward ShiftInsertionSourceCustomerFirstRunoutForwardPropag
ShiftSwapBackwardBackward ShiftMoveBackward
ShiftSwapBackwardForward ShiftMoveForward
ShiftSwapForwardBackward ShiftSwapBackwardBackward
ShiftSwapForwardForward ShiftSwapBackwardForward

ShiftSwapForwardBackward
ShiftSwapForwardForward

The first option, used to enlarge the neighborhood induced by certain transformations, is denoted by the suffix “Block”. The
second option, used to specialize some of the transformations according to the objective, is denoted by suffixes “Order”, ”Runout”,
or “Near”. The third option, used to set the direction during the (re)scheduling of shifts, is denoted by the suffixes “Backward” or
“Forward”. Finally, the fourth option, used to facilitate the propagation of flows during the volume (re)assignment, is denoted by
the suffix “Propag”.

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 43

Table 18 The pool TLR of transformations.

TLR

OperationDeletionBackward OperationMoveInsideShiftBeforeBackward
OperationDeletionForward OperationMoveInsideShiftBeforeForward
OperationDeletionBackwardBlock OperationMoveInsideShiftAfterBackward
OperationDeletionForwardBlock OperationMoveInsideShiftAfterForward
OperationInsertionCustomerBackward OperationMoveInsideShiftBeforeBackwardBlock
OperationInsertionCustomerForward OperationMoveInsideShiftBeforeForwardBlock
OperationInsertionSourceBackward OperationMoveInsideShiftAfterBackwardBlock
OperationInsertionSourceForward OperationMoveInsideShiftAfterForwardBlock
OperationInsertionSourceCustomerBackward OperationSwapBetweenShiftsBackwardBackward
OperationInsertionSourceCustomerForward OperationSwapBetweenShiftsBackwardForward
OperationInsertionSourceCustomerNearBackward OperationSwapBetweenShiftsForwardBackward
OperationInsertionSourceCustomerNearForward OperationSwapBetweenShiftsForwardForward
OperationEjectionCustomerBackward OperationSwapBetweenShiftsBackwardBackwardBlock
OperationEjectionCustomerForward OperationSwapBetweenShiftsBackwardForwardBlock
OperationEjectionCustomerNearBackward OperationSwapBetweenShiftsForwardBackwardBlock
OperationEjectionCustomerNearForward OperationSwapBetweenShiftsForwardForwardBlock
OperationEjectionSourceBackward OperationSwapInsideShiftBackward
OperationEjectionSourceForward OperationSwapInsideShiftForward
OperationEjectionSourceNearBackward OperationSwapInsideShiftBackwardBlock
OperationEjectionSourceNearForward OperationSwapInsideShiftForwardBlock
OperationEjectionCustomerBackwardBlock OperationMirrorInsideShiftBackwardBlock
OperationEjectionCustomerForwardBlock OperationMirrorInsideShiftForwardBlock
OperationEjectionCustomerNearBackwardBlock ShiftSlidingBackward
OperationEjectionCustomerNearForwardBlock ShiftSlidingForward
OperationEjectionSourceBackwardBlock ShiftResourcesChangingBackward
OperationEjectionSourceForwardBlock ShiftResourcesChangingForward
OperationEjectionSourceNearBackwardBlock ShiftDeletion
OperationEjectionSourceNearForwardBlock ShiftInsertionSourceCustomerBackward
OperationMoveBetweenShiftsBackwardBackward ShiftInsertionSourceCustomerForward
OperationMoveBetweenShiftsBackwardForward ShiftMoveBackward
OperationMoveBetweenShiftsForwardBackward ShiftMoveForward
OperationMoveBetweenShiftsForwardForward ShiftSwapBackwardBackward
OperationMoveBetweenShiftsBackwardBackwardBlock ShiftSwapBackwardForward
OperationMoveBetweenShiftsBackwardForwardBlock ShiftSwapForwardBackward
OperationMoveBetweenShiftsForwardBackwardBlock ShiftSwapForwardForward
OperationMoveBetweenShiftsForwardForwardBlock

