
1 16
Thierry Benoist Julien Darlay Bertrand Estellon

Frédéric Gardi Romain Megel Karim Nouioua

How LocalSolver qualified with a
100-lines model?

2 16

LocalSolver
LocalSolver in a nutshell

3 16

What is LocalSolver?

The first math programming solver based on local search
• Pure model-and-run approach : no extra code to write

• Solve highly nonlinear 0-1 models

• Scale up to 10 million decision variables

Portable software
• Fully portable: Windows, Linux, Mac OS (x86, x64)

• Light object-oriented APIs: a few classes only

• Lightweight APIs available for C++, Java, .Net

Comes with an innovative modeling language for fast prototyping

 Solve problems intractable with IP/CP/SAT solvers

4 16

Why local search, why LocalSolver?

Weaknesses of tree search
• Not suited to reach quickly good “integer feasible solutions”

• Designed to prove optimality

• Exponential time: not scalable (the best IP solvers still fail to find feasible
solutions for real-life instances with 10,000 binaries)

• An incomplete tree search is not more optimal than a local search

Practitioners need :
• A solver which provides high-quality solutions in seconds

• A scalable solver which tackle problems with millions of variables

• A solver which proves optimality of infeasibility when possible

5 16

How it works?

3 main layers :
LS solver must work as a LS practitioner works

1. Incremental algorithm, sublinear evaluation
exploit the invariants induced by the mathematical operators
→ thousands of solutions explored each second

2. Structured moves that maintain feasibility
moves performed on the hypergraph of decisions
and constraints (ejection chains, cycles, ...)

3. Heuristic and search strategy
heuristic based on simulated annealing to get out of local optima
multithreading to ensure faster convergence and robustness

90%
of the
kernel

6 16

The EURO/Roadef Challenge
LocalSolver modeling

7 16

Model in 3 parts

Each step corresponds to a specific function in the modeler

1. Read the input data
open file, read the initial assignment, read resources, groups, …

2. Write the model
Declare boolean variables, constraints, objectives, …

3. Parameterize the resolution
Set time or iteration limit, load an initial solution.

100-lines , 1 day of work

8 16

How to model with LocalSolver ?

1. Declare the decision variables
A decision is a variable you can't compute from other variables

2. Declare the constraints of your problem

3. Declare the objectives

9 16

Assignment of processes to machines
These decisions completely determine the solution

Decisions and basic constraints

// 0-1 decisions
x[0..nbProcesses-1][0..nbMachines-1] <- bool();

Compact loop syntax

Binary decision variables

xpm= 1  process p on machine m

for [p in 0..nbProcesses-1]
 constraint sum[m in 0..nbMachines-1](x[p][m]) == 1;

Sum of nbMachines terms

Each pocess must be assigned to a single machine

for [m in 0..nbMachines-1][r in 0..nbResources-1] {
 u[m][r] <- sum[p in 0..nbProcesses-1](require[p][r] * x[p][m]);
 constraint u[m][r] <= capacity[m][r];
}

Integer intermediate

variables

Capacity constraints

10 16

Other constraints

for [s in 0..nbServices-1][m in 0..nbMachines-1]
 constraint sum[p in processByService[s]](x[p][m]) <= 1;

Conflict constraints
processes of the same service must run on distinct machines

M1 M2 M3

P1

P6

P7

P4

P3

P2

P4

S1

M4

P8

for [s in 0..nbServices-1] {
 coveredLocations[s] <- sum[l in 0..maxLocation](
 or[p in processByService[s]][m in machineByLocation[l]](x[p][m]));
 constraint coveredLocations [s] >= spread[s];
}

Spread constraints
processes of the same service must spread on a set of locations

11 16

Objectives

a[m in 0..nbMachines-1][r in 0..nbResources-1] <- capacity[m][r] - u[m][r];
for [b in 0..nbBalances-1] {
 r1 = resource1[b];
 r2 = resource2[b];
 tg = target[b];
 balanceCost[b] <- sum[m in 0..nbMachines-1](max(tg * a[m][r1] - a[m][r2], 0));
}

totalBalanceCost <- sum[b in 0..nbBalances-1](bweight[b] * balanceCost[b]);

Objective : Load cost
loadCost[r in 0..nbResources-1] <- sum[m in 0..nbMachines-1](max(u[m][r] - safety[m][r], 0));
totalLoadCost <- sum[r in 0..nbResources-1](rweight[r] * loadCost[r]);

Objective : Balance cost

Objective : Process move cost
processMoveCost <- sum[p in 0..nbProcesses-1](pcost[p] * not(x[p][initialMachine[p]]));

12 16

Objectives

obj <- totalLoadCost
 + totalBalanceCost
 + wpmc * processMoveCost
 + wsmc * serviceMoveCost
 + wmmc * totalMachineMoveCost;

minimize obj;

Objective : Service move cost

Objective : Machine move cost
for [p in 0..nbProcesses-1] {
 m0 = initialMachine[p];
 machineMoveCost[p] <- sum[m in 0..nbMachines-1 : m != m0](mcost[m0][m] * x[p][m]);
}
totalMachineMoveCost <- sum[p in 0..nbProcesses-1](machineMoveCost[p]);

for [s in 0..nbServices-1]
 nbMoved[s] <- sum[p in 0..nbProcesses-1 : service[p] == s](!x[p][initialMachine[p]]);
serviceMoveCost <- max[s in 0..nbServices-1](nbMoved[s]);

Total cost

13 16

Qualification results
instance variables binaries solution best

A1-1 6,020 400 44,306,501 44,306,501

A1-2 1,812,044 100,000 787,434,004 777,532,896

A1-3 1,423,438 100,000 583,014,803 583,005,717

A1-4 753,404 50,000 272,304,480 252,728,589

A1-5 229,213 12,000 727,578,410 727,578,309

A2-1 1,415,324 100,000 5,934,529 198

A2-2 3,769,381 100,000 1,163,672,839 816,523,983

A2-3 3,843,977 100,000 1,555,764,432 1,306,868,761

A2-4 1,537,771 50,000 2,089,185,551 1,681,353,943

A2-5 1,556,017 50,000 575,691,649 336,170,182

100-lines model, 1 day of work,
11 million solutions explored in 5 min

LocalSolver qualified (25/80)

14 16

The EURO/Roadef Challenge

For the B instances ?
Boolean model has its limits

• With 4GB of RAM, LocalSolver tackles B1, B2 & B3 instances

• For other instances, a machine with 40GB of RAM is required

Solution : decompose the model
• Take a subset of machines (20.000 decisions)

• Optimize with LocalSolver on this subset for 1 second

• Repeat the operation 300 times

 Same model, one more day of work
15 million solutions explored in 5 min

15 16

Final stage results
instance machines processes LS 2.0 direct LS 2.0 based

B1 100 5,000 4,443,248,534 3,997,678,428

B2 100 5,000 1,368,865,436 1,163,729,413

100 20,000 351,813,894 266,280,383

B4 1,000 10,000 5,796,304,487 4,682,013,089

B5 100 40,000 1,048,102,941 1,015,121,228

B6 200 40,000 9,537,599,318 9,550,921,033

B7 4,000 40,000 RAM exploded 16,340,742,734

B8 100 50,000 1,323,157,749 1,316,777,967

B9 1,000 50,000 RAM exploded 15,959,363,471

B10 5,000 50,000 RAM exploded 19,314,990,649

B3

1/18

