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Abstract

The NP-hard problem of car sequencing appears as the heart of the logistic process
of many car manufacturers. The subject of the ROADEF’2005 Challenge addressed
a car sequencing problem proposed by the car manufacturer RENAULT, more com-
plex than the academic problem generally addressed in the literature. This paper
describes two local search approaches for this problem. In the first part, a new
approach by very large-scale neighborhood search is presented. This approach, de-
signed during the qualification stage preceding the final, is based on an original inte-
ger linear programming formulation. The second part is dedicated to the approach
which enabled us to win the ROADEF’2005 Challenge. Inspired by the latest works
on the subject, this one is based on very fast explorations of small neighborhoods.
Our contribution here is mainly algorithmic, in particular by showing how much
exploiting invariants speeds up the neighborhood evaluation and contributes to the
diversification of the search. Finally, the two approaches are compared and discussed
through an extensive computational study on RENAULT’s benchmarks. The main
conclusion drawn at this point is that sophisticated metaheuristics are useless to
solve car sequencing problems. More generally, our victory on ROADEF’2005 Chal-
lenge demonstrates that algorithmic aspects, sometimes neglected, remain the key
ingredients for designing and engineering high-performance local search heuristics.
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1 Introduction

A modern car factory is composed of three major workshops: the sheet metal
workshop where the body of the car is assembled, the paint workshop where
the car is painted, and the assembly line where the equipments and options of
each vehicle are set. The car sequencing problem consists in determining the
order in which a set of vehicles should go through these three workshops so as
to make easier the whole process of fabrication. An ordered set of vehicles is
called sequence.

Each workshop is subject to specific constraints, which tend to be in conflict
with each other. In order to limit the complexity of the problem, the previous
works on the subject [8–11,18,22] dealt only with the constraints and objectives
related to the assembly line. In the context of the ROADEF’2005 Challenge
organized by the French Operations Research Society, a more complex problem
was posed by the car manufacturer RENAULT, including both the needs of
the paint workshop and the ones of the assembly line.

1.1 The RENAULT’s car sequencing problem

For the paint workshop, the objective is to minimize the consumption of sol-
vent used to purge the spray guns at each change of color in the sequence.
In a more explicit way, the goal is to minimize the number of purges (or
color changes), which amounts to group vehicles which have the same color.
Nevertheless, the number of consecutive vehicles having the same color must
not exceed a certain value, noted PAINT-LIMIT (the color must be changed
regularly to allow a better visual checking of the quality).

In order to smooth the workload on the different stations composing the as-
sembly line, it is necessary to space out the vehicles for which setting options
needs some heavy operations. In other words, the goal is to minimize the den-
sity of vehicles which require much work to assemble, to avoid overloading the
stations where these vehicles are assembled. This need of spacing out vehicles
is formalized by defining a ratio constraint for each option. For example, for an
option to which is associated the ratio 3/7, one shall not find more than three
vehicles affected by the option in any contiguous subsequence consisting of 7
vehicles (such subsequences are called windows). As it is not possible to know
in advance if all the ratio constraints are satisfiable, these ones are defined
as soft constraints. In this way, the objective is to minimize the number of
violations for all the ratio constraints. In the previous example, if 5 vehicles
have the option in a window of 7, then 2 violations are counted. To distinguish
certain options having priority, the violations are weighted by some constants.
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Here the options are classified into two kinds: priority or non-priority.

In this real-life version, the objective function is composed of three terms which
are minimized in lexicographic order: the number of color changes (RAF), the
number of violations on priority options (EP) and the number of violations
on non-priority options (ENP). For example, the ordering EP/RAF/ENP means
that the first objective is EP, the second is RAF and the third ENP. In this
way, three kinds of objectives are possible: EP/ENP/RAF, EP/RAF/ENP and
RAF/EP/ENP. In fact, these different orderings of objectives lead to car se-
quencing problems which are, by nature, quite different with each other.

1.2 Previous works

The car sequencing problem is strongly NP-hard, even if only ratio constraints
are considered [11], and the brute force use of constraint programming or inte-
ger programming softwares reaches its limit when one hundred or so vehicles
with few options are considered (see the studies of [10,20]). Then, several
heuristics have been proposed to solve effectively car sequencing problems like
ant colony optimization [9,10,22], greedy algorithms [9] or local search [9,18].

These approaches have been intensively studied and experimented in the con-
text of ROADEF’2005 Challenge [3,4]. In effect, the heuristics designed by the
different competitors to the Challenge are principally based on local search
techniques, integrated into improvement heuristics based on classical schemes
like simulated annealing or tabu search, or more exotic ones like iterated local
search, variable neighborhood search or greedy randomized adaptive search
procedures (see for example the hybrid heuristic proposed by Ribeiro et al.
[19], second team of the competition). The main characteristic of all these
heuristics is the small size of the neighborhood explored at each iteration.

Recently, some approaches based on large neighborhood search have been pro-
posed to solve car sequencing problems. Although appearing as an improve-
ment heuristic in many classical algorithms like augmenting path algorithms
for solving matching problems, the concept of large neighborhood search has
been really formalized and studied only for ten years. Unfortunately, the for-
mal definition of what is large neighborhood search in combinatorial opti-
mization seems to differ slightly from one scientific community to another.
In constraint programming community, large neighborhood search is viewed
as the hybridization of local search and exact resolution techniques like con-
straint programming or mixed integer programming, without precise notion
of complexity (see [21] and more recent works like [5,13,15]). On the other
hand, operations researchers define very large-scale neighborhoods as neigh-
borhoods whose size grows exponentially with respect to the size of input data,
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and work on designing polynomial algorithms to explore such neighborhoods.
A comprehensive survey on very large-scale neighborhood search techniques
was recently written by Ahuja et al. [2].

Perron et al. [14,15] have worked on the integration of local search into a
constraint programming environment dedicated to the resolution of ratio con-
straints. During the redaction of this paper, we have been informed of the work
of Prandtstetter and Raidl [17] hybridizing integer linear programming and
local search. In both cases, the experimental results reported by the authors
are not competitive with pure local search (note that the results given in [17]
on RENAULT’s instances are in fact erroneous [16]).

All the terminology related to local search which is employed throughout the
paper is derived from the book of Aarts and Lenstra [1].

1.3 Organization of the paper

The paper describes two local search approaches for the RENAULT’s car
sequencing problem, both integrated into a simple descent heuristic.

The first part is dedicated to a new approach by very large-scale neighborhood
search. This approach, designed during the qualification stage preceding the
final, is based on an original integer linear programming formulation. Our at-
tention is focused on the treatment of RENAULT’s constraints and objectives.
An oncoming paper [7] deals with this approach and its theoretical foundations
in the context of academic car sequencing problems (i.e., including only ratio
constraints); because resulting of a more recent research, these achievements
are not detailed here.

The second part is devoted to the local search approach which enabled us
to win the ROADEF’2005 Challenge. Inspired by the recent works of Got-
tlieb et al. [9,18] on the subject, this one is based on very fast explorations of
small neighborhoods. Our contribution stands at two levels. First, the neigh-
borhood functions proposed in [9,18] are enriching and adapting to treat the
RENAULT’s car sequencing problem at best, in particular the contraints and
objectives related to the paint workshop. Besides, we explain how to make the
exploration very efficient by maintaining special data structures incrementally.
This second contribution, mainly algorithmic, is probably the most important
part of our work, by showing how much exploiting invariants speeds up the
neighborhood evaluation and contributes to the diversification of the search
(the reader is referred to the work of Michel and Van Hentenryck [12] for an
introduction to the concept of invariants in local search).

Finally, the two approaches are compared and discussed through an extensive
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computational study on RENAULT’s benchmarks. The main conclusion drawn
at this point, quite surprising, is that sophisticated metaheuristics are useless
to solve car sequencing problems. On the other hand, the paper ends with
promising research ideas to improve the efficiency of these approaches.

A preliminary version of this paper has been published in French in [6].

2 Very large neighborhood search

In this section, we present a heuristic based on very large-scale neighborhood
search which qualified our team to the final of the ROADEF’2005 Challenge.
This one can be viewed as hybrid in the sense that it mixes local search and
integer linear programming (ILP).

2.1 ILP formulation

An original ILP formulation of the RENAULT’s car sequencing problem is
described here. The number of vehicles, of options and of colors are respectively
denoted by NPOS, NOP and NCOL. To each option i is attached the ratio
constraint Pi/Qi where Pi ≤ Qi are positive integers; Q-MAX corresponds to
the maximum value among all the Qi’s. In order to reduce the number of
variables, similar vehicles are grouped into classes (two vehicles are similar if
they share the same options and the same color). The number of classes is
denoted by NCL and each class k contains Nk vehicles.

First, to each pair class k/position j is associated a binary variable clk,j whose
value is 1 if the vehicle at position j belongs to class k and 0 otherwise. The
basic constraints (1) and (2) ensure that all the vehicles of a class are assigned
to a position and that a position is occupied by one and only one vehicle of a
class:

NPOS∑

j=1

clk,j = Nk ∀k ∈ {1, . . . , NCL} (1)

NCL∑

k=1

clk,j = 1 ∀j ∈ {1, . . . , NPOS} (2)

Now, a binary variable oi,j is associated to each pair option i/position j whose
value is 1 if the vehicle at position j has option i and 0 otherwise. Having
defined for each pair class k/option i a constant OPk,i which equals 1 if the
vehicles of class k have option i and 0 otherwise, each variable oi,j can be
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expressed as a linear function of the clk,j’s:

oi,j =
NCL∑

k=1

OPk,i × clk,j ∀i ∈ {1, . . . , NOP} ∀j ∈ {1, . . . , NPOS} (3)

Then, counting up the number vi,j of violations on option i for the window
beginning at position j is done via the inequality

vi,j ≥
j+Qi−1∑

f=j

oi,f − Pi ∀i ∈ {1, . . . , NOP} ∀j ∈ {1, . . . , NPOS − Qi + 1} (4)

coupled with the positivity constraint vi,j ≥ 0, since the vi,j’s are minimized.
In effect, Qi−1 similar constraints should be added to count violations caused
by the last (resp. first) vehicles sequenced the previous (resp. next) day, but
for the sake of simplicity these ones are omitted here.

The variables and constraints concerning colors are defined in a similar way. To
each pair color i/position j is associated a binary variable ci,j whose value is 1
if the vehicle at position j has color i and 0 otherwise. Having defined for each
pair class k/color i a constant COk,i which equals 1 if vehicles of class k must
be painted with color i and 0 otherwise, each variable ci,j can be expressed
linearly in function of the clk,j’s:

ci,j =
NCL∑

k=1

COk,i × clk,j ∀i ∈ {1, . . . , NCOL} ∀j ∈ {1, . . . , NPOS} (5)

Then, to each position j is associated a variable pj whose value is 1 when a
purge is performed between positions j − 1 and j. The activation of the pj’s
is done via the pair of constraints

pj ≥ ci,j − ci,j−1

pj ≥ ci,j−1 − ci,j

∀i ∈ {1, . . . , NCOL} ∀j ∈ {2, . . . , NPOS} (6)

which is equivalent to the XOR constraint pj = ci,j−1 ⊕ ci,j, since the pj’s are
minimized. Then, the PAINT-LIMIT constraints are expressible using the ci,j’s
too:

j+PAINT-LIMIT∑

f=j

ci,f ≤ PAINT-LIMIT
∀i ∈ {1, . . . , NCOL}

∀j ∈ {1, . . . , NPOS − PAINT-LIMIT}
(7)

To conclude, the objective function of the ILP is written, with CVi the cost of
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one violation on option i and CP the cost of one purge:

Minimize
NOP∑

i=1

NPOS−Qi+1∑

j=1

CVi × vi,j +
NPOS∑

j=2

CP × pj (8)

The values of the constants CVi and CP are chosen in such a way that the
three objectives EP, ENP and RAF are minimized in the desired lexicographic
order.

One can observe that the integrality of the clk,j’s ensures the integrality of
any solution of the ILP. Conversely, if the sole oi,j’s and ci,j’s are integral, any
solution of the ILP is integral too. Consequently, the domains of variables can
be defined as follows: if NCL ≤ NOP + NCOL then

clk,j ∈ {0, 1} ∀k ∈ {1, . . . , NCL} ∀j ∈ {1, . . . , NPOS} (9)

else

oi,j ∈ {0, 1} ∀i ∈ {1, . . . , NOP} ∀j ∈ {1, . . . , NPOS}

ci,j ∈ {0, 1} ∀i ∈ {1, . . . , NCOL} ∀j ∈ {1, . . . , NPOS}
(10)

Unlike the more classical formulation proposed by Gravel et al. [10] (which
omits the intermediate variables oi,j and ci,j) or even the one given recently
by Prandtstetter and Raidl [17], the number of binary variables is not only
determined by the number of classes, but by the number of options and colors
too.

In conclusion, the total number of variables is (NCL + NOP + NCOL) · NPOS,
of which min{NCL, NOP + NCOL} · NPOS are binary. The total number of
constraints is NCL + (3 · NOP + 4 · NCOL + 1) · NPOS. The number of nonzero
coefficients of the matrix is bounded by NPOS · (2 · NCL + (NCL + Q-MAX +
3) ·NOP + (NCL + PAINT-LIMIT + 7) ·NCOL). Thus, assuming that Q-MAX and
PAINT-LIMIT are small constants in practice, the matrix of the ILP is quite
sparse.

2.2 ILP-based neighborhood search

The ILP formulation given above allows us to solve exactly some instances
consisting of nearly one hundred vehicles with few options and colors in a rea-
sonable lapse of time by using state-of-the-art ILP solvers. Unfortunately, for
large-scale instances (of the order of one thousand or so vehicles), such tenta-
tives are doomed to fail: the linear relaxation of the program is generally very
fractional with cost equal to zero and a classical branch-and-bound procedure
has trouble finding one integer solution. In this section, we show how to take
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advantage of ILP to explore effectively exponential neighborhoods. Here are
the broad lines of the improvement heuristic.

VLNS heuristic(TIME-LIMIT)

Begin;

initialize K, OBJ and T-MAX;

compute initial sequence;

while TIME-LIMIT is not reached do

choose K movable vehicles;

construct ILP restricted to these K movable vehicles and objectives OBJ;

run branch-and-bound on ILP during T-MAX seconds;

update current sequence and adjust K, OBJ and T-MAX;

end do;

return current sequence;

End;

At each iteration of the descent, K vehicles of the sequence are chosen in order
to exchange their positions; these K vehicles are called movable. The neighbor-
hood of the current solution, called K-permutation neighborhood, is defined
as the set of sequences which are obtainable by permuting these movable ve-
hicles. Thus, the number of neighbors is potentially K!, with equality when
PAINT-LIMIT constraints are not considered. Having defined OBJ as a subset
of the three objectives EP, ENP and RAF, the goal is to find a neighbor having
a better (or equal) cost than the current solution, or even the best possible
one, in accordance with objectives in OBJ. To do that, the ILP restricted to
objectives OBJ is solved where all the variables corresponding to non-movable
vehicles are fixed. The resolution is done using a basic branch-and-bound pro-
cedure in a lapse of time limited to T-MAX seconds; in order to speed up the
computation of the linear relaxation, a realizable basis built from the current
solution is given to the simplex algorithm. Once the resolution finished or in-
terrupted for lack of time, the current solution is updated and the parameters
K, OBJ and T-MAX are adjusted to plan a new iteration.

The efficiency of the heuristic is based on the choice of the movable vehicles
and the three parameters K, OBJ and T-MAX. These ones must be chosen in
such a way to perform the best improvements at each iteration, in particular
to decrease quickly the cost of the initial solution. Note that solutions of
equal cost are necessary to diversify the search when finding better solutions
becomes difficult.

2.2.1 The choice of movable vehicles

Two kinds of optimization must be considered: the case where the prime ob-
jective is EP and the case where the prime objective is RAF.
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When EP is the prime objective, the following remark is a key to lower the
time necessary to obtain an optimal integer solution of the restricted ILP: the
further apart are the movable vehicles in the sequence, the better is the quality
of the linear relaxation of the ILP. This phenomenon, initially verified through
experimentations, has been recently characterized by using some elements of
polyhedral analysis. In particular, we have proved that if any two movable
vehicles are distant from at least Q-MAX positions, then any basic optimal
solution of the linear relaxation of the restricted ILP is integer. More details
shall appear in [7]. Thus, a simple way to proceed is to choose movable vehicles
in windows where violations appear and complete by movable vehicles picked
randomly into the sequence.

When RAF is the prime objective, an optimal assignment of colors is initially
computed (see Section 4 for details). Then, the goal is to determine an optimal
assignment of colors which minimizes the number of violations on objectives
EP and ENP. In this case, movable vehicles are chosen into random blocks of
consecutive positions to preserve the optimality of the assignment.

2.2.2 The choice of objectives

Since the objectives are lexicographically ordered, more computing time is
allocated to the realization of the first objective than to the second and the
third ones. Thus, the whole heuristic is composed of three phases: approxi-
mately 70% of the total computing time is dedicated to the realization of the
first objective, 25% to the realization of the second objective, and 5% to the
realization of the third objective.

When more than one objective is considered, fixing variables corresponding to
higher-priority objectives in the ILP is done to intensify the search on a lower-
priority objective; not fixing these variables can be viewed as a diversification
of the search.

Because considering several objectives during the neighborhood search aug-
ments the size of the ILP, the values of the parameters K and T-MAX must
be carefully chosen. If K is too large or T-MAX too low, the resolution of the
restricted ILP often fails (no integer solution found), which considerably slows
down the descent. To prevent that, an idea is to initialize K to a small value
and to increase it as the iterations go. When one resolution fails, the value of
K is stabilized in order to choose the largest number of movable vehicles for a
given value of T-MAX.
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3 Very fast local search

This section is devoted to the local search heuristic which enabled us to win the
ROADEF’2005 Challenge. Based on very fast explorations of small neighbor-
hoods, this first-improvement descent heuristic differs radically from the one
exposed in the previous section. More precisely, the algorithm applies at each
iteration one transformation to the current sequence which modifies it only
very locally. If the transformation is good, that is, respects the PAINT-LIMIT

constraints and does not increase the cost of the current solution, this one is
really performed. This approach is inspired by the recent works of Gottlieb et
al. [18,9] on the subject. Here are the broad lines of the heuristic.

VFLS heuristic(TIME-LIMIT)

Begin;

compute initial sequence;

while TIME-LIMIT is not reached do

choose transformation and positions where applying it;

if transformation is good then

update current sequence by performing it;

end if;

end do;

return current sequence;

End;

Having presented the different transformations which are employed, we shall
give the keys which made the success of this approach.

3.1 The transformations

Five basic transformations are used: swap, forward insertion, backward inser-
tion, reflection and random shuffle (see Figure 1). A swap simply consists in
exchanging the positions of two vehicles of the sequence. A forward insertion
localized on a portion vk, x, y, z, vl of vehicles consists in extracting vl, shifting
the vehicles vk, x, y, z to the right, and reinserting vl at the position which re-
mains unfilled (the former position of vk); after the transformation, the initial
portion contains in order the vehicles vl, vk, x, y, z. A backward insertion is de-
fined in a symmetric way, by extracting vk instead of vl. A reflection between
two vehicles vk and vl consists in reversing the portion of vehicles between
vk and vl. Finally, a random shuffle between vk and vl consists in shuffling
randomly the vehicles in the portion defined by these two positions.

The neighborhood which can be explored according to swap, insertion and
reflection transformations is only of size O(NPOS2). Moreover, the selection
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vk vl vkvl

vk vlvlx y z vk yx z

vk vl vkx y z x y z vl

x y z z y xvk vl vl vk

x y zvk vl x vl yvkz

swap

forward insertion

backward insertion

reflection

random shuffle

Fig. 1. The five transformations.

of the neighbor is guided by no sophisticated rule: the first neighbor lowering
or even equaling the cost of the current solution is retained for a new search.
Note that the acceptance of transformations which do not improve the cost
is crucial; coupled with a very fast evaluation procedure, this is a way, in
addition to the random shuffle transformation, to diversify widely the search
and then to avoid local optima during the descent.

Since the effectiveness of this approach relies directly on the number of per-
formed transformations, two questions must be considered carefully: how to
increase the probability of success of one transformation? and how to increase
the number of attempted transformations? The answer to the second question
– make the evaluation of transformations fast – is detailed finally. Now we an-
swer to the first question by giving some hints to choose cleverly the positions
where transformations must be applied.

3.2 Choosing the positions

The simplest way to choose the positions where to apply swap, insertion and
reflection transformations consists in picking out randomly the positions k
and l. This generic strategy is essentially employed early during the descent
to decrease the cost quickly when EP is the prime objective. However, sharper
strategies are useful when finding better solutions becomes difficult. Of course,
such strategies depend on what is the prime objective and which kind of
transformation is applied. All these strategies are exposed on Figure 2.

For swaps, choosing vehicles sharing some options or having the same color
augments the chance of success of the transformation. In the same way, choos-
ing adjacent positions in the sequence limits the risk of deterioration while
making the evaluation faster. For insertions and reflections, a good strategy
is to choose k and l such that the distance |l − k| is equal to the denominator
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Qi of one ratio constraint. When RAF is the prime objective, choosing the po-
sitions k and l as the beginning or the ending of a sequence of vehicles having
the same color limits the chances to break such sequences.

Variants Description

Generic Pick two positions k and l randomly.

Similar
Pick two positions k and l such that the corresponding
vehicles share some options.

Consecutive Pick a position k randomly and set l = k + 1.

Violation
Pick a position k where a violation appears and choose
l randomly.

Denominator
Pick a position k and an option i randomly and set l =
k + Qi.

Same color
Pick two positions k and l such that the corresponding
vehicles have the same color.

Border block one
Pick a position k at the beginning or at the ending of
a sequence of vehicles having the same color. Choose l
randomly.

Border block two
Pick the positions k and l at the beginning or at the
ending of a sequence of vehicles having the same color.

Violation same color
Pick a position k where a violation appears and choose
l such that the corresponding vehicle has the same color
than the one at position k.

Fig. 2. The different strategies for choosing positions.

The global heuristic is composed of four optimization subroutines: Greedy
which computes an initial solution, OptA which decreases the number of vio-
lations on ratio constraints (when optimizing first on EP or ENP objectives),
OptB which builds some blocks of colors (when optimizing RAF objective after
EP or ENP objectives), and OptC which decreases the number of violations
while maintaining blocks of colors (when optimizing EP or ENP objectives after
RAF objective). The percentage of total time consumed by each optimization
subroutine is given on Figure 3, for each kind of objective function. For ex-
ample, the first line of the table means that 60% of the total time is spent in
subroutine OptA for EP objective, 25% in subroutine OptA for EP and ENP

objectives, and 15% in subroutine OptB for the three objectives. The exact
composition of each optimization subroutine is detailed on Figure 4; for exam-
ple, the number of generic swaps which are attempted represents 66% of the
total number of attempted transformations for subroutine OptA. More details
on Greedy subroutines are given in Section 4.

All these values have been determined by conducting extensive experimenta-
tions on RENAULT’s instances. To summary, these ones teach us the following
general rules. When optimizing firstly on ratio contraints (optA), the number
of swaps dominate. More than 66% of attempted transformations are basic

12



swaps; the number of insertions and reflections should be around 15%. To
create or maintain blocks of colors (optB, optC), the number of swap, inser-
tion and reflection transformations is more homogeneous, respectively around
40%, 25% and 35%. Remark that random shuffles are used sparsely (1% of
attempted transformations) because time-consuming. These ones, which are
done on short portions of sequence (no more than a dozen of vehicles), seem
to ensure in practice the convergence towards a global optimal solution. They
serve as second level of diversification, after the acceptation of solutions of
equal cost.

Objectives Phase 1 Phase 2 Phase 3 Phase 4

EP/ENP/RAF Greedy EP 60% OptA 25% OptA 15% OptB

EP/RAF/ENP Greedy EP 60% OptA 25% OptB 15% OptC

EP/RAF Greedy EP 50% OptA 50% OptB -

RAF/EP/ENP Greedy RAF 80% OptC 20% OptC -

RAF/EP Greedy RAF 100% OptC - -

Fig. 3. The optimization sequences for each objective function.

Transformations Variants OptA OptB OptC

Swap

Generic 66% 18% -

Similar 2% - -

Consecutive 2% 4% 5%

Same color - 8% 25%

Border block two - 10% 5%

Violation 2% 2% -

Violation same color - 1% 5%

Insertion

Generic 8% - -

Denominator 8% - -

Same color - 30% 12%

Border block one - 8% 12%

Reflection

Generic 7% - -

Denominator 4% - -

Same color - 8% 10%

Border block one - 6% 10%

Border block two - 4% 15%

Shuffle Generic 1% 1% 1%

Fig. 4. The composition of each optimization subroutine.
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3.3 Making the evaluation fast

Choosing the positions where is applied one transformation is not really time-
consuming. The bottleneck in term of complexity of one iteration of the VFLS
heuristic is clearly the evaluation. Fortunately, the singular structure of the
first four transformations (swap, forward insertion, backward insertion and
reflection) reveals some invariants which are exploitable thanks to special data
structures to evaluate quickly the impact of these transformations on the cost
of the current solution.

For violations, the crucial remark is that the number of windows which are
perturbed by one of the first four transformations (that is, which must be
reevaluated) depends only on the denominator of each ratio constraint, gener-
ally small in practice. For swaps, only windows containing the two exchanged
vehicles vk and vl are perturbed. In the case of forward and backward inser-
tions, the windows which are entirely contained between the vehicles vk and
vl are shifted of one position. Thus, only windows containing vk and vl must
be considered for the evaluation of insertion transformations. The same idea
holds for reflections since windows entirely contained between extremal posi-
tions k and l are reversed, which lets the number of violations into these ones
unchanged. This remark is formalized through the following proposition.

Proposition 1 For any ratio constraint Pi/Qi, the number of windows which
require to be reevaluated following one swap, one insertion or one reflection is
at most 2Qi, which is the best possible bound. Then, evaluating the new number
of violations following one of these transformations is done in O(Qi) time.

The second part of the proposition rises from the definition of the data struc-
ture used to maintain the number of violations. This one is quite simple, stor-
ing for each option and each window associated to this option, the number of
vehicles which require it. Then, the evaluation of swaps is done by simulating
the exchange of vk by vl in every window containing vk and the exchange of vl

by vk in every window containing vl. By using this data structure, simulating
the insertion or the deletion of one vehicle in a window associated to an op-
tion is done in constant time. Since at most 2Qi windows are concerned for an
option with ratio constraint Pi/Qi, the evaluation of one swap transformation
takes O(Qi) time for this option. By applying the same idea, the evaluation
of forward and backward insertions is done in O(Qi) time too for each op-
tion i. The evaluation of reflections is more delicate because the number of
modified positions in each modified window (that is, containing vk and vl) is
not constant. Here is the way to process. At iteration j, evaluate the window
ending at the position vk+j and the one starting at the position vl−j. Now,
start the evaluation with j = 0 and stop it when every window which is likely
to act upon the number of violations has been considered. At iteration j, the
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vehicles moving into the two considered windows are composed of those at
position vk+j and vl−j, plus the ones contained in the two windows treated
at iteration j − 1. By using this property, each iteration can be computed in
constant time. Since O(Qi) iterations are performed, the reflection is evaluated
in O(Qi) time for any option i.

Proposition 2 Detecting violations of PAINT-LIMIT constraints and evaluat-
ing the new number of purges following one swap, one insertion or one reflec-
tion is done in O(1) time.

Another special data structure is used for maintaining informations concerning
colors. This one contains for each position j of the sequence, the indices of
the beginning and the ending of the block of vehicles having the same color
than the vehicle at j and containing it. For the first four transformations
(swap, forward insertion, backward insertion and reflection), such informations
suffice to check in O(1) time if the transformation respects the PAINT-LIMIT

constraints and to evaluate in O(1) time too the new number of purges, since
only a constant number of positions around vk and vl needs to be scanned to
do this.

The update of the two previous structures can be done efficiently, but this is
not crucial here because such an operation is performed in case of success only.
Since the number of attempted transformations dominates largely the number
of performed transformations, the complexity of updating becomes negligible
compared to the one of evaluating. The remark is also valid concerning the
initialization of the data structures. In consequence, these aspects are left to
the reader.

3.4 Speeding up the evaluation

Since there is no compensation between objectives EP, ENP and RAF, the or-
der of their evaluation is significant. In many cases, the evaluation process
can be stopped before to have evaluated the three objectives. For example,
if a transformation deteriorates (resp. improves) the current solution for the
first objective, the decision to reject (resp. accept) this transformation can be
taken without evaluating the last two objectives (because the first one dom-
inates the two others). Indeed, the second objective needs to be evaluated
only if the value of the first objective is not modified by the transformation.
Obviously, this remark holds for the evaluation of the second and the third
objectives. In the same way, starting the evaluation by checking if the trans-
formation respects the PAINT-LIMIT constraints seems to be judicious, since
the verification takes only O(1) time. Figure 5 gives the general scheme of an
evaluation.

15



rejected

1st objective

2nd objective

3rd objective

> 0

> 0

= 0

= 0

< 0

< 0

≤ 0

> 0

ok

PAINT-LIMIT
not ok

accepted

Fig. 5. General evaluation scheme of one transformation.

The evaluation can be further improved heuristically for ratio constraints.
In effect, the order in which the ratio constraints are treated is significant
too. Suppose that after the evaluation of one transformation for some ratio
constraints, the number of violations newly created is greater than the total
number of violations on the remaining ratio constraints (that is, which are
not evaluated yet). Then, the evaluation can be stopped immediately and the
transformation rejected, because in all cases the transformation shall deterio-
rate the sequence.

option before max profit after profit

A 3 14 5 –2

B 0 14 3 –5

C 1 13 0 –4

D 0 13 2 –6

E 7 6 10 –9

F 4 2 STOP

G 2 0

option before max profit after profit

E 7 10 10 –3

F 4 6 8 –7

A 3 3 STOP

G 2 1

C 1 0

B 0 0

D 0 0

Fig. 6. Speeding up the evaluation: without ordering (left), with ordering (right).

Accordingly, evaluating ratio constraints in the decreasing order of the num-
ber of violations seems to be a good heuristic to decide earlier of the rejection.
Figure 6 shows an example of evaluation without special ordering on ratio
constraints (left) and the same case having ordered options according to the
number of violations (right). The column named “before” (resp. “after”) cor-
responds to the number of violations for each option before (resp. after) the
transformation. The column named “max profit” gives for an option X the
maximum profit obtainable on options evaluated after X; the column named
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“profit” gives for an option X the profit obtained on options evaluated until
X (negative profits mean an increase in the cost of the current sequence).

4 Computing initial solutions

4.1 Greedy algorithms

Greedy algorithms are useful to obtain good initial solutions, and even become
crucial when prime objective is RAF. The greedy algorithms that we employed
are inspired from the DSU heuristic from Gottlieb et al. [9], which is based on
the dynamic utilization rate

dur(i, πj) =
Qi

Pi

·
Ni(Π) − Ni(πj)

|Π| − |πj|

defined for each option i, where πj represents the partial sequence built until
position j, Π the set of cars to be produced, Ni(πj) the number of vehicles re-
quiring option i in the sequence πj, and Ni(Π) the number of vehicles requiring
option i in the set Π.

If the prime objective is to minimize the number of violations on priority
options (EP), our algorithm, named Greedy EP, chooses the next vehicle so as
to maximise the sum of dynamic utilization rates computed only on priority
options, while not violating PAINT-LIMIT constraints.

If the prime objective is to minimize the number of purges (RAF), our algo-
rithm, named Greedy RAF, starts by choosing the color of the next vehicle.
The number NCi of vehicles requiring color i among those which remain to
insert is stored for each color i. If a vehicle having the same color than the
last one of the sequence under construction can be inserted without violating
PAINT-LIMIT, the algorithm makes it. Otherwise, another color is chosen such
that the value of NCi is as large as possible; such a choice is useful to prevent
the case where a lot of vehicles sharing the same color remains without vehicle
having a different color to separate them. Having fixed the color of the next
vehicle, the algorithm chooses the one which maximises the sum of dynamic
utilization rates on priority options.

Theoretically speaking, the heuristic Greedy RAF is not exact because some
sequences may be built which does not respect PAINT-LIMIT. But in practice,
PAINT-LIMIT constraints are not so hard to satisfy (RENAULT ensures us an
admissible solution) and such a heuristic allows to obtain good solutions for
the prime objective RAF but also for the second objective EP. In the following
section, an optimal algorithm is presented to solve the problem for colors.
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4.2 An optimal algorithm for colors

Here is described an optimal algorithm to solve the problem for colors (that
is, for objective RAF only). In input, we have the PAINT-LIMIT and for each
color i, the number NCi of vehicles which require this color (the computation
of the NCi’s can be done in O(NPOS) from the characteristics of the vehicles).
A maximal subsequence of vehicles having the same color is called a block.
Then, the problem is to determine a minimum ordered partition of the NPOS

vehicles into blocks such that the size of each block does not exceed the PAINT-

LIMIT, if such a partition exists. Having such a solution, the number of purges
equals the number of blocks minus one.

The quantity ⌈NCi/PAINT-LIMIT⌉, which corresponds to the minimum number
of blocks necessary to partition the vehicles of color i, is denoted by NBi. Let
c be the color for which NCi, or equivalently NBi, is maximum.

Proposition 3 The problem has a solution if and only if NBc ≤
∑

i6=c NCi +1.
When this condition is satisfied, the optimal number of blocks is given by the
expression max{2NBc − 1,

∑
i NBi}.

The “only if” part of the first assertion is verified by observing that when
NBc >

∑
i6=c NCi + 1, there are not enough vehicles to separate each pair of

blocks with color c by one vehicle with color i 6= c. Assuming that NBc ≤∑
i6=c NCi + 1, the rest of the proposition is demonstrated constructively.

According to the definition of the NBi’s, an optimal sequence is composed of at
least

∑
i NBi blocks. On the other hand, each pair of blocks with color c must

be separated by at least one block with color i 6= c, which implies the second
lower bound 2NBc − 1. Consider first the case where 2NBc − 1 >

∑
i NBi,

which can be rewritten as NBc >
∑

i6=c NBi + 1. In this case, a solution is
obtained by subdividing blocks of color i 6= c while NBc remains strictly greater
than the sum of blocks of color i 6= c plus one (this is always possible since
NBc ≤

∑
i6=c NCi + 1) and then ordering alternatively blocks of color c and

blocks of color i 6= c. Now, consider the case where NBc ≤
∑

i6=c NBi + 1.
Here a sequence is built by applying the following rule: the color of the next
block to be placed in the sequence is, among all the colors differing from the
one of the previous block, the one in which remains the largest number of
blocks. Applying this rule iteratively maintains the validity of the condition
NBc ≤

∑
i6=c NBi + 1 after each iteration, ensuring that no two blocks having

the same color remain at the end of the sequence. According to the previous
discussion, we obtain the following algorithmic result.

Proposition 4 Determining if the problem for colors has one solution takes
O(NPOS + NCOL) time. If there is one, computing it can be done in O(NPOS ·
NCOL) time.
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4.3 Sampling techniques

To speed up the VLNS heuristic, sampling techniques have been also employed.
The idea consists in considering the problem with ⌊Ni/α⌋ vehicles of each class
i, with α > 1. Having obtained a solution to this reduced problem (called
sample solution), a solution to the initial problem is built by repeating α
times the sample solution and completed by Ni mod α vehicles of each class i.

In practice, sampling with α = 2 allows to obtain good solutions for starting
the whole local search, in particular, better than greedy algorithms. Indeed,
the reduced problem is solved by the VLNS heuristic too and in many cases,
optimal solutions for the first objective are obtained (the heuristic finishes by
selecting all the vehicles of sequence as movable, i.e., K = NPOS).

5 Experimental results

The VLNS and VFLS algorithms have been implemented in C ANSI program-
ming language. The experimentations have been realized on a computer with
1.6 GHz Pentium 4 and 1024 Mo of RAM. The VFLS algorithm obtained the
best results of the Challenge, whereas the VLNS algorithm was ranked around
the sixteen position among the 24 algorithms which were submitted (see [3,4]
for more details). In both cases, our algorithms greatly improves the results
obtained by RENAULT according to an approach based on simulated anneal-
ing. Figures 9 and 10 presented at the end of the paper report results obtained
on the RENAULT’s benchmarks in the context of ROADEF’2005 Challenge.
For each instance, the best result obtained by the two algorithms among 10
trials is given, each trial having a time limit of 10 minutes. The column “EP”
denotes the number of violations on priority ratio constraints, “ENP” the
number of violations on non-priority ratio constraints and “RAF” the number
of purges. For example, if the name of an instance ends in EP RAF ENP,
then the objectives to minimize are EP, RAF and ENP in lexicographic order.

The VLSN algorithm uses ILOG-CPLEX 9.0 as integer linear programming
library. The parameter T-MAX is fixed around 10 seconds and the value of
the parameter K, initialized around 70 vehicles, is quickly increased to select
from the half to the two thirds of the total number of vehicles. On average,
the time spent to solve optimally the restricted ILP by branch-and-bound is
about 3 seconds (note that the computation of the linear relaxation is the most
time-consuming), which leads approximately to 20 iterations per minute. In
comparison, the VFLS algorithm performs several millions of iterations per
minute (on some instances, we have observed until 20 millions of iterations
per minute).
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Fig. 7. Percentage of transformations really performed by the VFLS algorithm.

Figure 7 shows the percentage of transformations which are really performed
among all the attempted transformations by the VFLS algorithm for four
instances with different objectives. The percentage of random shuffles is too
small to be mentioned, but this one is not nul. The vertical dotted lines mark
the transitions between the different optimization phases during the execution
of the VFLS algorithm (phases 2, 3, 4 which are described on Figure 3). For in-
stance 024 38 5 EP ENP RAF, the percentage of performed transformations
is low (of the order of 1 %), whereas for instance 035 ch1 EP RAF ENP S22 J3,
the same percentage is quite high (of the order of 10 %). Figure 8 details the
curves during the second optimization phase for objective ENP. The number of
performed swaps and insertions are given on the left ordinate, and the number
of violations on non priority options on the right ordinate.

Here the major remark is that in almost all cases, the percentage of performed
transformations remains constant while the objective function is lowered (dur-
ing one optimization phase). This surprising property explains why no local
optimum is met during the descent in practice: since the number of attempted
transformations is huge, having a constant percentage of accepted transforma-
tions, even small, ensures a great diversification of the search. This fact inspires
to us the following question, which calls a deep theoretical study: given one
solution, does a sequence of swap, insertion or reflection transformations exists
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leading to a solution having a better cost?
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Fig. 8. A zoom on ENP optimization on instance 025 38 1 EP ENP RAF.

6 Conclusion

Correctly implemented, a VFLS-like algorithm seems to be the most judicious
choice to tackle car sequencing problems. Concise implementations allow to get
good results quickly, without using special external libraries (like integer linear
programming library). Moreover, this approach remains as robust as very large
neighborhood search, because local optima are rarely met in practice.

Nevertheless, the convergence of the VLNS algorithm could be largely speeded
up by writing a branch-and-bound procedure and a simplex algorithm dedi-
cated to the problem. In the same way, the hybridation of VFLS and VLNS
techniques, useless at this point, seems to be promising according to the new
results that we obtained on very large-scale neighborhood search restricted to
ratio constraints [7].
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Instances VLNS VFLS

EP ENP RAF EP ENP RAF

022 3 4 EP RAF ENP 0 0 66 0 1 31

022 3 4 RAF EP ENP 39 1 11 39 1 11

024 38 3 EP ENP RAF 4 43 875 4 0 306

024 38 3 EP RAF ENP 4 101 336 4 83 249

024 38 5 EP ENP RAF 4 62 899 4 34 309

024 38 5 EP RAF ENP 4 381 576 4 79 280

025 38 1 EP ENP RAF 0 398 809 0 99 720

025 38 1 EP RAF ENP 0 2263 285 0 2452 229

039 38 4 EP RAF ch1 24 0 291 13 0 131

039 38 4 RAF EP ch1 251 0 68 161 0 68

048 39 1 EP ENP RAF 4 85 454 0 61 291

048 39 1 EP RAF ENP 0 676 210 0 615 175

064 38 2 EP RAF ENP ch1 0 769 173 0 759 112

064 38 2 RAF EP ENP ch1 433 783 63 423 782 63

064 38 2 EP RAF ENP ch2 0 36 45 0 51 34

064 38 2 RAF EP ENP ch2 367 56 27 367 52 27

022 EP ENP RAF S22 J1 0 4 174 0 3 109

022 EP RAF ENP S22 J1 0 135 45 0 144 19

022 RAF EP ENP S22 J1 22 154 13 22 148 13

023 EP ENP RAF S23 J3 55 0 702 48 0 317

023 EP RAF ENP S23 J3 58 76 518 48 8 310

023 RAF EP ENP S23 J3 1347 35 50 1327 31 50

024 V2 EP ENP RAF S22 J1 1129 1162 889 1074 850 430

024 V2 EP RAF ENP S22 J1 1099 2462 609 1074 1068 298

024 V2 RAF EP ENP S22 J1 2186 1679 132 2022 1158 132

025 EP ENP RAF S22 J3 0 3966 890 0 3912 479

025 EP RAF ENP S22 J3 0 5353 254 0 5180 167

025 RAF EP ENP S22 J3 135 6336 126 122 5589 126

028 ch1 EP ENP RAF S22 J2 54 10 95 54 3 79

028 ch1 EP RAF ENP S22 J2 54 271 85 54 124 49

028 ch1 RAF EP ENP S22 J2 102 253 38 98 201 38

028 ch2 EP ENP RAF S22 J3 0 70 3 0 70 6

028 ch2 EP RAF ENP S22 J3 0 72 6 0 71 4

028 ch2 RAF EP ENP S22 J3 0 72 6 0 71 4

029 EP ENP RAF S21 J6 35 2150 265 35 2150 167

029 EP RAF ENP S21 J6 35 2209 277 35 2170 165

029 RAF EP ENP S21 J6 723 2170 52 709 2171 52

035 ch1 EP ENP RAF S22 J3 67 52 55 67 52 49

035 ch1 EP RAF ENP S22 J3 67 62 40 67 64 36

035 ch1 RAF EP ENP S22 J3 156 91 6 156 90 6

Fig. 9. Results on Base A, B and X (first part).
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Instances VLNS VFLS

EP ENP RAF EP ENP RAF

035 ch2 EP ENP RAF S22 J3 385 341 206 385 341 205

035 ch2 EP RAF ENP S22 J3 385 351 187 385 351 187

035 ch2 RAF EP ENP S22 J3 652 671 7 651 671 7

039 ch1 EP ENP RAF S22 J4 0 29 876 0 29 117

039 ch1 EP RAF ENP S22 J4 0 558 105 0 89 78

039 ch1 RAF EP ENP S22 J4 45 337 55 45 96 55

039 ch3 EP ENP RAF S22 J4 0 0 244 0 0 197

039 ch3 EP RAF ENP S22 J4 0 262 206 0 146 189

039 ch3 RAF EP ENP S22 J4 214 704 59 214 671 59

048 ch1 EP ENP RAF S22 J3 0 0 294 0 0 200

048 ch1 EP RAF ENP S22 J3 0 497 215 0 378 161

048 ch1 RAF EP ENP S22 J3 124 761 64 115 670 64

048 ch2 EP ENP RAF S22 J3 3 0 381 3 0 337

048 ch2 EP RAF ENP S22 J3 3 1131 123 3 1029 93

048 ch2 RAF EP ENP S22 J3 306 1212 75 282 1180 58

064 ch1 EP ENP RAF S22 J3 0 4 519 0 0 182

064 ch1 EP RAF ENP S22 J3 0 270 172 0 187 130

064 ch1 RAF EP ENP S22 J3 111 359 62 95 288 62

064 ch2 EP ENP RAF S22 J4 0 69 134 0 69 130

064 ch2 EP RAF ENP S22 J4 0 78 136 0 69 130

064 ch2 RAF EP ENP S22 J4 52 190 31 52 178 31

022 RAF EP ENP S49 J2 2 3 12 2 3 12

023 EP RAF ENP S49 J2 0 76 246 0 66 192

024 EP RAF ENP S49 J2 31 42 536 0 6 337

025 EP ENP RAF S49 J1 11 224 694 0 160 407

028 CH1 EP ENP RAF S50 J4 42 421 108 36 370 94

028 CH2 EP ENP RAF S51 J1 0 0 4 0 0 3

029 EP RAF ENP S49 J5 0 28 156 0 42 110

034 VP EP RAF ENP S51 J1 J2 J3 0 643 95 0 586 55

034 VU EP RAF ENP S51 J1 J2 J3 8 44 93 8 8 87

035 CH1 RAF EP S50 J4 10 0 5 10 0 5

035 CH2 RAF EP S50 J4 56 0 6 56 0 6

039 CH1 EP RAF ENP S49 J1 0 471 88 0 239 69

039 CH3 EP RAF ENP S49 J1 0 271 249 0 30 231

048 CH1 EP RAF ENP S50 J4 1 1064 224 0 1044 196

048 CH2 EP RAF ENP S49 J5 31 1065 116 31 1116 76

064 CH1 EP RAF ENP S49 J1 61 135 278 61 29 187

064 CH2 EP RAF ENP S49 J4 0 0 60 0 0 37

655 CH1 EP RAF ENP S51 J2 J3 J4 0 0 45 0 0 30

655 CH2 EP RAF ENP S52 J1 J2 S01 J1 153 0 50 153 0 34

Fig. 10. Results on Base A, B and X (second part).
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