
On partitioning interval graphs into proper

interval subgraphs and related problems

Frédéric Gardi

Bouygues e-lab, 40 rue Washington, 75008 Paris, France

Abstract

In this paper, we establish that any interval graph (resp. circular-arc graph) with n
vertices admits a partition into at most ⌈log3 n⌉ (resp. ⌈log3 n⌉+1) proper interval
subgraphs, for n > 1. The proof is constructive and provides an efficient algorithm
to compute such a partition. On the other hand, this bound is shown to be asymp-
totically sharp for an infinite family of interval graphs. In addition, some results are
derived for related problems.

Key words: interval graphs, circular-arc graphs, proper interval graphs, graph
partitioning problems, efficient graph algorithms

1991 MSC: 05C70, 05C35, 68R10

1 Introduction

A graph G = (V,E) is an interval graph if to each vertex v ∈ V can be
associated an open interval Iv of the real line, such that two distinct vertices
u, v ∈ V are adjacent if and only if Iu∩Iv ̸= ∅. The family {Iv}v∈V is an interval
representation of G (see Fig. 1). The left and right endpoints of the interval Iv
are respectively denoted l(Iv) and r(Iv). The class of interval graphs coincide
with the intersection of the classes of chordal graphs and of complements of
comparability graphs (cf. [14]). A graph is chordal if it contains no induced
cycle of length greater than or equal to four; chordal graphs are also known as
the intersection graphs of subtrees in a tree (cf. [14]). Comparability graphs
are the transitively orientable graphs, they correspond to graphs of partial
orders.

Email address: fgardi@bouygues.com (Frédéric Gardi).

Preprint submitted to Journal of Graph Theory 3 June 2010

R

Fig. 1. An interval graph and its representation.

Circular-arc graphs are the intersection graphs of arcs on a circle (see Fig. 2). A
circular-arc graph G = (V,E) admits a circular-arc representation {Av}v∈V in
which each arc Av is defined by its counterclockwise endpoint and its clockwise
endpoint. Note that a circular-arc representation of a graph G which fails
to cover some point p on the circle is topologically the same as an interval
representation of G [14]. Thus, every interval graph is a circular-arc graph.

v Av

Fig. 2. A circular-arc graph and its representation around the circle.

A graph G is a proper interval graph if there is an interval representation of
G in which no interval properly contains another (see Fig. 3). Unit interval
graphs are the graphs having an interval representation in which all the inter-
vals have the same length. Claw-free interval graphs are the interval graphs
without induced copy of the claw K1,3 (the tree composed of one central ver-
tex and three leaves). Roberts (cf. [14, pp. 187–188], see also [11] for a short
constructive proof) has shown that the class of proper interval graphs coincide
with the classes of unit interval graphs and claw-free interval graphs.

R

Fig. 3. A proper interval graph and its representation.

1.1 Main results and motivations

Interval graphs and circular-arc graphs have been intensively studied for sev-
eral decades by both mathematicians and computer scientists. These two

2

classes of graphs are particularly known for providing numerous models in
diverse areas like genetics, psychology, sociology, archaeology, or scheduling.
For more details on these graphs and their applications, the reader can consult
the books by Roberts [18,19], Golumbic [14], or Fishburn [7].

In this paper, the problem of partitioning interval graphs into proper interval
subgraphs is investigated. Bounds on the size of a minimum partition of an
interval graph into proper interval subgraphs have been given in a previous
author’s paper [8]. Here sharper upper bounds are established, leading to the
following theorem. Note that floor and ceiling functions are crucial in the
statement of the theorem, which may be seemingly counterintuitive.

Theorem 1.1 Any interval graph (resp. circular-arc graph) with n vertices
and m edges admits a partition into at most ⌈log3 n⌉ (resp. ⌈log3 n⌉ + 1)
proper interval subgraphs, for n > 1. Moreover, such a partition is computed
in O(n log n + m) time and linear space. On the other hand, for each n, an
interval graph exists which admits no partition into less than ⌊log3(2n+ 1)⌋
proper interval subgraphs.

In addition, some bounds are derived for the related problem of finding the
largest proper interval subgraph in an interval graph. Some complexity issues
are also discussed.

This theorem could find applications in the design of approximation algorithms
for hard optimization problems restricted to interval graphs or circular-arc
graphs, since many problems untractable for these graphs become efficiently
solvable for proper interval graphs. For example, given a graphG and a positive
integer k, the mutual exclusion scheduling problem [1] consists in determining
a minimum coloring of G such that each color appears at most k times. The
mutual exclusion scheduling problem is NP-hard for interval graphs even if
k is a constant greater than or equal to four [2], whereas it is solvable in
linear time and space for proper interval graphs [13]. In this case, the above
theorem yields immediately an efficient ⌈log3 n⌉-approximation algorithm for
the mutual exclusion scheduling problem for interval graphs (partition the
interval graph into ⌈log3 n⌉ proper interval subgraphs and solve optimally the
mutual exclusion scheduling problem for each subgraph). An application of
these results in the area of workforce scheduling, which has actually inspired
this research, is described in previous author’s papers [8,12,13].

This theorem could also be interpreted in order-theoretic terms as follows:
any interval order with n elements admits a partition into at most ⌈log3 n⌉
subposets isomorphic to unit interval orders (also known as semiorders in
mathematical psychology). The interested reader is referred to [7] for more
details on interval orders and semiorders.

All the results presented in this paper appear in the author’s thesis [9], written

3

in French, and have been announced in [10].

1.2 Preliminaries

All the graphs considered throughout the paper are undirected, unless explicit
notice is made to the contrary. The number of vertices and the number of edges
of the graph G = (V,E) are respectively denoted by n and m throughout the
paper. A complete set or clique is a subset of pairwise adjacent vertices. The
clique C is maximum if no other clique of the graph has a size strictly greater
than the one of C; the clique number ω(G) denotes the size of a maximum
clique in G. On the other hand, an independent set or stable is a subset of
pairwise non-adjacent vertices and the stability α(G) denotes the size of a
maximum stable in G. A q-coloring of the graph G corresponds to a partition
of G into q stables and the chromatic number corresponds to the size of a
minimum coloring of G.

The graph K1,t, called t-star, is a tree composed of one central vertex and
t leaves. K1,3 is also called claw. A graph is K1,t-free if it contains no graph
K1,t as induced subgraph. An interval representation I1, . . . , In whose inter-
vals are ordered according to nondecreasing left (resp. right) endpoints is a
<l-ordered (resp. <r-ordered) interval representation. Besides, we write Ii ≺ Ij
if r(Ii) ≤ l(Ij) (the relation ≺ induces a partial order on the intervals). For
the sake of brevity, we denote by l(Cj) (resp. r(Cj)) the largest left end-
point (resp. smallest right endpoint) of an interval in a clique Cj; l(Cj) (resp.
r(Cj)) is called the left endpoint (resp. right endpoint) of the clique Cj. In this
way, we say that an interval contains the clique Cj if it contains the portion
]l(Cj), r(Cj)[of the line.

A graph G = (V,E) is a split graph if its vertices can be partitioned into
two sets S and C such that S induce a stable and C a clique. By analogy
with bipartite graphs, split graphs are denoted by G = (S,C,E). A graph
G = (V,E) is a threshold graph if to each vertex v ∈ V can be associated a
positive integer av such that X ⊆ V is a stable if and only if

∑
x∈X ax ≤ t with

t being an integer (called the threshold). The vertices of a threshold graph can
be partitioned into a clique C = C1 ∪ · · · ∪ Cr and a stable S = S1 ∪ · · · ∪ Sr

(with all Ci, Si not empty except Sr) such that a vertex of Si is adjacent to a
vertex of Ci′ if and only if i′ > i for any i, i′ ∈ {1, . . . , r}. Thus, every threshold
graph is a split graph. Threshold graphs form also a subclass of interval graphs
[14], as shown on Fig. 4.

All interval graphs are perfect, which is not true for circular-arc graphs (see
[3,14]). Interval graphs, circular-arc graphs, proper interval graphs, and thresh-

4

C3
S

R

C

S1

S2

S3

C1

C2

Fig. 4. An interval representation of a threshold graph.

old graphs are recognized in linear time and space (see [3,5,6,14,16,17]).

All the graph-theoretical terms which are not defined here can be found in
[3,14].

2 Proof of the theorem

In this section, the different parts of the theorem announced in the introduc-
tion are established. We start by proving the lower bound, previously stated
in [8] (minor flaws appearing in the original proof are corrected). Let Hk be a
k-partite graph whose interval representation is built by defining recursively
the stables S1, . . . , Sk as follows. The stable S1 consists of only one open in-
terval of length 3k−1. For i = 2, . . . , k, the stable Si is obtained by copying
the stable Si−1 and subdividing each one of its intervals into three open in-
tervals of equal length (see Fig. 5 for an example of construction). The set of
stables S1, . . . , Sk resulting of this construction induces a k-partite graph with
n =

∑k
i=1 3

i−1 = (3k − 1)/2 vertices.

S1

S2

S3

1

R

Fig. 5. An interval representation of the graph H3.

Lemma 2.1 For every k ≥ 1, the k-partite graph Hk with n = (3k − 1)/2
vertices admits no partition into less than k = log3(2n + 1) proper interval
subgraphs.

Proof. Since each stable induces trivially a proper interval subgraph, Hk

admits immediately a partition into k proper interval subgraphs. Using in-

5

duction, we show that this partition is of minimum cardinality. Denote by
ξ(Hk) the size of a minimum partition of Hk into proper interval subgraphs.
One can easily observe that ξ(H1) = 1 and ξ(H2) = 2. Now, assume that
ξ(Hi−1) = i − 1. To demonstrate that ξ(Hi) = i, suppose the contrary and
consider a partition of Hi into i−1 sets I1, . . . , Ii−1 of intervals, inducing each
one a proper interval subgraph.

Consider without loss of generality that the sole interval I∗ ∈ S1 belongs to
the set I1. Then, we claim that the intervals of the set I1 \ {I∗} induce at
most two disjoint cliques. Indeed, the contrary implies the existence of K1,3

as induced subgraph in I (with I∗ as central vertex and one interval of each
disjoint clique as leaves). This claim implies that at least one interval of S2

as well as all the intervals coming from its subdivision in S3, . . . , Si do not
belong to the set I1. Now, these intervals induce a copy of the graph Hi−1,
which requires i− 1 proper interval subgraphs to be partitioned according to
the induction hypothesis. Consequently, a contradiction is observed, since the
only i−2 sets I2, . . . , Ii−1 are available to realize this partition. This allows to
conclude that ξ(Hi) = i for all i > 2, which completes the proof by induction.

Finally, the equality n = (3k − 1)/2 yields ξ(Hk) = log3(2n+ 1). 2

Proposition 2.2 For every n ≥ 1, an interval graph with n vertices exists
which admits no partition into less than ⌊log3(2n+ 1)⌋ proper interval sub-
graphs. For every t > 1, a K1,t-free interval graph with at least ⌊(3t− 4)/2⌋
vertices exists which admits no partition into less than ⌊log3(3t− 3)⌋ proper
interval subgraphs.

Proof. Define the graph Hk with k the largest integer such that n ≥ (3k −
1)/2. Then, add to this graph n−(3k−1)/2 isolated vertices. According to the
previous lemma, this graph admits no partition into less than ⌊log3(2n+ 1)⌋
proper interval subgraphs.

To prove the second assertion, observe that the graph Hk is K1,t-free for t =
3k−1 + 1. Having expressed n and ξ(Hk) in function of t, we obtain that Hk

contains at least ⌊(3t− 4)/2⌋ vertices and admits no partition into less than
⌊log3(3t− 3)⌋ proper interval subgraphs, for any value of k ≥ 1. 2

Now, new results are given which improve the upper bound established in
[8]. The next lemma is central in the proof of the logarithmic upper bound.
This lemma requires the following classical linear-time and space algorithm
for partitioning interval graphs into cliques (see for example [15]).

Algorithm Canonical-Partition-Into-Cliques;
Input: an interval graph G = (V,E);

6

Output: a canonical partition of G into cliques;
Begin;

compute a <l-ordered interval representation I1, . . . , In of G;
i← 1, j ← 0;
while i ≤ n do

Cj ← {Ii}, rclique ← r(Ii), i← i+ 1;
while i ≤ n and l(Ii) ≤ rclique do

Cj ← Cj ∪ {Ii};
if r(Ii) < rclique then rclique ← r(Ii);
i← i+ 1;

j ← j + 1;
return {C0, . . . , Cj−1};

End;

Computing an ordered interval representation of G is done in linear time and
space [16] (see also [3,14]). Then, the computation of cliques takes O(n) time
and space. These cliques form a partition of the interval graph G into cliques.
By picking the interval having the smallest right endpoint in each clique Cj, we
obtain a maximum stable of G, which implies that this partition is minimum
[15]. Thus, such a partition into cliques shall be called canonical throughout
the paper.

Lemma 2.3 Any K1,t-free interval graph admits a partition into

⌈
log3

3t− 3

2

⌉
proper interval subgraphs, for t > 1. Moreover, such a partition is computed
in O(n log t+m) time and linear space.

Proof. Here is described the algorithm computing such a partition. Recall
that an interval contains a clique Cj if it contains the portion]l(Cj), r(Cj)[of
the line, where l(Cj) (resp. r(Cj)) is the largest left endpoint (resp. smallest
right endpoint) of an interval in Cj. Synthetically, having computed a canon-
ical partition into cliques, the algorithm colors these cliques in a logarithmic
fashion with the set of colors {0, . . . , i∗}; the output is the partition of G
induced by these i∗ + 1 colors.

Algorithm Color-Cliques-Logarithmic;
Input: a K1,t-free interval graph G = (V,E) with t > 1;
Output: a partition of G into ⌈log3((3t− 3)/2)⌉ proper interval subgraphs;
Begin;

compute a <l-ordered interval representation I1, . . . , In of G;
{C0, . . . , Cq−1} ← Canonical-Partition-Into-Cliques(G);
i∗ ← ⌈log3((t− 1)/2)⌉, C0 ← · · · ← Ci∗ ← ∅, i← i∗;
while i ≥ 0 do

7

for j from 0 to q − 1 by step of 3i do
let U be the set of all unmarked intervals containing the clique Cj ;
mark and add to Ci all intervals in U ;

i← i− 1;
return C0, . . . , Ci∗ ;

End;

First, the complexity of the algorithm is analyzed. Computing an ordered
interval representation of G is done in linear time and space [16] (see also
[3,14]). Then, a canonical partition of G into cliques is obtained in O(n) time
and space [15]. Searching the unmarked intervals containing the cliques Cj

takes O(n) time and space too. Indeed, the left endpoints of these intervals
are necessarily in the portion]r(Cj′), r(Cj)] of the line, where Cj′ is the clique
examined previously. Consequently, only one sweep of the intervals in the order
<l suffices to realize the search. Since the while loop is repeated i∗ + 1 times,
that is ⌈log3((t− 1)/2)⌉+1 times, the complete algorithm runs in O(n log t+
m) time and linear space.

Then, the correctness of the algorithm is demonstrated. At each step j of the
inner loop, the unmarked intervals which are included in the set Ci form a
clique (because all these intervals contain the clique Cj). Thus, each set Ci
(0 ≤ i ≤ i∗ − 1) is a union of cliques. Now, consider three cliques Cu, Cv, Cw

included in Ci, with u < v < w. We claim that at least one clique Ck with
u < k < w is included in Ci′ with i′ > i (in other words, three consecutive
cliques included in Ci are always separated by a clique previously included in
Ci′ with i′ > i). Indeed, the cliques included in Ci correspond to the set of
unmarked intervals containing Cj for j = β · 3i with β ≥ 0. But according
to the algorithm, the cliques Cj such that β is a multiple of three have been
previously included in a set Ci′ with i′ > i.

From this claim, we deduce that each set of C0, . . . , Ci∗−1 induces a proper
interval graph. Assume that an interval Ia and three intervals Ib ≺ Ic ≺ Id
induce a copy of K1,3 in the set Ci (with 0 ≤ i ≤ i∗ − 1). Clearly, the three
intervals Ib, Ic, Id belong to three different cliques in Ci and the interval Ia
must contain these three cliques. Now, according to the previous claim, Ia
also contains one clique included in Ci′ with i′ > i. Since the latter was formed
before the set Ci according to the algorithm, it should contain the interval Ia,
which is in contradiction with the hypothesis.

Finally, we show that the existence of an induced copy of K1,3 in the set Ci∗
implies the existence of an induced copy of K1,t in the graph G, which is a
contradiction.

Let Ci∗ = {Ci∗
1 , . . . , Ci∗

r } be the set of cliques which are included into the set
Ci∗ , in the order of their extraction by the algorithm (see Fig. 6). If r ≤ 2, then

8

R
≥ 3i

∗ ≥ 3i
∗

Ci∗
u Ci∗

v Ci∗
w

Fig. 6. The proof of K1,3 ⇒ K1,t for the set Ci∗ .

Ci∗ is trivially claw-free. Otherwise, suppose that Ci∗ contains an induced copy
ofK1,3 with Ia as central vertex and Ib ≺ Ic ≺ Id its three leaves. Clearly, these
leaves belong to disjoint cliques and we can set Ib ∈ Ci∗

u , Ic ∈ Ci∗
v and Id ∈ Ci∗

w

with 1 ≤ u < v < w ≤ r. Since the cliques of Ci∗ have been extracted from
the left to the right by the algorithm Canonical-Partition-Into-Cliques,
the interval Ia belongs necessarily to the clique Ci∗

u .

Now, select in each clique of the canonical partition between Ci∗
u and Ci∗

w the
interval having the smallest right endpoint and add it to the set S, initially
empty. We claim that S induces a stable of size at least t′ = 2 ·3i∗ +1. Indeed,
two intervals of S cannot overlap according to the algorithm Canonical-

Partition-Into-Cliques. At least 3i
∗
cliques appear in the canonical partition

between Ci∗
u (included) and Ci∗

v (excluded), and still at least 3i
∗
between Ci∗

v

(included) and Ci∗
w (excluded). Consequently, the set S contains at least t′

elements and the claim is demonstrated.

Since the interval Ia ∈ Ci∗
u overlaps the interval Id ∈ Ci∗

w , this one overlaps all
the intervals of S too, except maybe the last one (according to the <l order)
which belongs to the clique Ci∗

w . Thus, this last interval is replaced by Id which
cannot overlap the penultimate interval of S (otherwise, Id would not belong
to Ci∗

w). The resulting stable S has a size t′ = 2 · 3i∗ + 1 ≥ t, for all t > 1.
Then, we obtain that at least t pairwise disjoint intervals are intersected by
Ia, contradicting the initial assumption that G is K1,t-free. Consequently, the
set Ci∗ induces a proper interval graph too, which completes the proof. 2

Since a graph with n vertices is trivially K1,n-free, Lemma 2.3 provides imme-
diately the following general upper bound.

Proposition 2.4 Any interval graph admits a partition into at most

g0(n) =
⌈
log3

3n− 3

2

⌉
proper interval subgraphs, for n > 1. Moreover, this partition is computed in
O(n log n+m) time and linear space.

9

According to Propositions 2.2 and 2.4, the gap between the lower bound and
the upper bound is at most one (resp. two) for interval graphs (resp. circular-
arc graphs). Nevertheless, a direct application of the algorithmColor-Cliques-

Logarithmic may lead to unsatisfactory results for some instances. An ex-
ample of such instances is the star K1,n−1: whereas the minimum partition
into proper interval subgraphs is trivially of size two, the algorithm returns
a partition of cardinal ⌈log3((3n− 3)/2)⌉. In fact, all graphs having a chro-
matic number in O(1) and having an induced copy of K1,t with t = Ω(n) are
pathological for the algorithm Color-Cliques-Logarithmic. The following
corollary helps to further refine the upper bound. Remind that α(G) denotes
the size of a maximum stable in a graph G.

Corollary 2.5 Let G be an interval graph. If 1 ≤ α(G) < t, then G admits
a partition into at most g0(t) proper interval subgraphs. If t ≤ α(G) < n− 1,
then G admits a partition into at most g0(n− t)+1 proper interval subgraphs.
Moreover, in both cases, the partition is computed in O(n log t+m) time and
linear space.

Proof. The first assertion follows immediately from Lemma 2.3, since any
graph is trivially K1,t-free for t = α(G) + 1. The second assertion is proved
as follows. First, extract a maximum stable from G in linear time and space
[15]. Since α(G) ≥ t, at most n − t intervals remain in G (with n − t > 1).
Then, partition these remaining intervals into at most g0(n−t) proper interval
subgraphs according to Lemma 2.3. Since a stable induces trivially a proper
interval subgraph, the desired bound is obtained. 2

Remark 2.6 Here is another formulation of the previous corollary. Let G be
an interval graph satisfying one of the two following conditions, with t = O(1):
(i) G contains no induced copy of K1,t (or no stable of size greater than t);
(ii) G contains an induced copy of K1,n−t (or a stable of size greater than
n− t). Then, G admits a partition into O(1) proper interval subgraphs, which
is computed in linear time and space.

By joining the two assertions of the previous corollary, we obtain that any
interval graph admits a partition into at most g1(n, t) = max{g0(t), g0(n −
t) + 1}, for any value of t ∈ {2, . . . , n − 2}. Now, we can search a minimum
of the function g1(n, t) along the dimension t. Since the functions g0(t) and
g0(n − t) + 1 are respectively monotonically increasing and monotonically
decreasing, a lower bound of the minimum is given by the solution of the
equation g̃0(t) = g̃0(n− t) + 1 for 2 ≤ t ≤ n− 2 with g̃0(t) = log3((3t− 3)/2).
A straightforward calculation yields t̃ = (3n−2)/4 as solution to this equation.
Then, a minimum of g1(n, t) is obtained by taking the minimum among the
two values g0(⌈t̃⌉) and g0(n− ⌊t̃⌋) + 1, which can be bounded as follows:

10

g0(⌈t̃⌉)≤⌈log3((9n− 6)/8)⌉
g0(n− ⌊t̃⌋) + 1≤⌈log3((9n+ 18)/8)⌉

Finally, the best bound is g1(n) = ⌈log3((9n− 6)/8)⌉, reached for the value
t = ⌈(3n− 2)/4⌉ and n ≥ 6 (but the bound can be extended until n > 1
by verifying that g1(2) = g1(3) = 1 and g1(4) = g1(5) = 2). In this way, the
coefficient 3/2 in g0(n) is reduced to 9/8 in g1(n), improving yet the upper
bound of Proposition 2.4.

The paradigm used in Corollary 2.5 can be generalized by the following recur-
sive algorithm.

Algorithm Color-Cliques-Recursive;
Input: a <l-ordered interval representation I of the graph G;
Output: a partition of G into proper interval subgraphs;
Begin;

if |I| ≤ 3 then return I;
else

choose a value of t in {2, . . . , n− 2};
compute a maximum stable S in I;
if |S| < t then return Color-Cliques-Logarithmic(I);
else
I ← I \ S;
return S ∪Color-Cliques-Recursive(I);

End;

Set t = ⌈αn⌉, with 0 ≤ α ≤ 1. Now, assume that the algorithm Color-

Cliques-Recursive stops after i recursive calls with i ≥ 0. At call i + 1, the
cardinality of the set I is lower than (1− α)in and i sets have been added to
the partition. Then, the cardinality of the output partition is lower than

i+

⌈
log3

3 ⌈α(1− α)in⌉ − 3

2

⌉

when the algorithm ends by calling Color-Cliques-Logarithmic, which can
be bounded by ⌈

log3
3i+1

2
α(1− α)in

⌉
Now, we can determine the optimal value of α, and thus of t, for which the
above expression is minimum over i. By differentiating the expression (without
ceiling) with respect to i, we obtain

3

2
α(3− 3α)i(ln 3 + ln(1− α))

whose zeros are 0 and 2/3. Since t = 0 causes a contradiction (such a value
prevents the algorithm Color-Cliques-Logarithmic to be called), the opti-
mum value for t is ⌈2n/3⌉, leading to the upper bound ⌈log3 n⌉. On the other

11

hand, if the algorithm terminates due to the condition |I| ≤ 3, then we have
(1 − α)in ≤ 3, implying that the number of previous recursive calls cannot
exceed ⌈logβ(n/3)⌉ with β = 1/(1 − α). In this case, the cardinality of the
partition is lower than ⌈logβ(βn/3)⌉, leading to the upper bound ⌈log3 n⌉ for
α = 2/3.

Finally, the complexity of the algorithm Color-Cliques-Recursive is ana-
lyzed for t = ⌈2n/3⌉. According to the previous discussion, the number of
recursive calls is bounded by O(log n). Thus, carefully implemented, the en-
tire algorithm takes O(n log n) time and linear space. Indeed, computing a
maximum stable is done in O(n) time since an ordered interval representa-
tion is given in input, and the algorithm Color-Cliques-Logarithmic runs
in O(n log n) time according to the previous proposition.

Proposition 2.7 Any interval graph admits a partition into at most ⌈log3 n⌉
proper interval subgraphs, for n > 1. Moreover, this partition is computed in
O(n log n+m) time and linear space.

As corollary, we also obtain an upper bound for the class of circular-arc graphs.

Corollary 2.8 Any circular-arc graph admits a partition into at most ⌈log3 n⌉+
1 proper interval subgraphs, for n > 1. Moreover, this partition is computed
in O(n log n+m) time and linear space.

Proof. Let G = (V,E) be a circular-arc graph. Compute a circular-arc rep-
resentation of G in linear time and space [17]. Choose a point p on the circle
and compute the set C of vertices corresponding to arcs containing p. To ob-
tain the desired upper bound, observe that the set C induces a clique (which
induces trivially a proper interval graph) and that the subgraph induced by
V \ C is an interval graph. 2

To conclude, an interval graph is built for which the upper bound ⌈log3 n⌉ pro-
vided by the algorithm Color-Cliques-Recursive is asymptotically reached.
Define ⌈2n/3⌉ − 1 intervals with unit length inducing a stable and then cover
them by a sole interval I. This corresponds to an interval representation of the
graph K1,⌈2n/3⌉−1. Now, complete the representation by arranging the remain-
ing intervals, with unit length too, in such a way that the maximum stable
in the graph remains of size ⌈2n/3⌉ − 1. Whereas this interval graph admits
trivially a partition into two proper interval subgraphs (the interval I on one
hand, the unit intervals on the other hand), the algorithm Color-Cliques-

Recursive returns a partition of size ⌈log3((3⌈2n/3⌉ − 3)/2)⌉ ≤ ⌈log3 n⌉, with
equality when n tends to infinity.

12

3 Complexity issues

Here are derived two complexity results about the problem of partitioning
graphs into proper interval subgraphs.

Corollary 3.1 The problem of partitioning into proper interval subgraphs is
solvable in linear time and space for K1,7-free interval graphs.

Proof. Let G be a K1,7-free interval graph. First, test in linear time and space
if G is a proper interval graph [5,6]. If not, then use the algorithm Color-

Cliques-Logarithmic with t = 7 to partition the graph into two proper
interval subgraphs in linear time and space (according to Lemma 2.3). 2

Corollary 3.2 The problem of partitioning into proper interval subgraphs ad-
mits an approximation algorithm for interval graphs (resp. circular-arc graphs)
providing a worst-case ratio ⌈log3 n⌉/2 (resp. (⌈log3 n⌉+1)/2) in O(n log n+m)
time and linear space.

Proof. Let G be an interval graph. If G is not a proper interval graph (whose
recognition is done in linear time and space [5,6]), then the algorithm Color-

Cliques-Recursive returns a partition of G into ⌈log3 n⌉ proper interval sub-
graphs in O(n log n+m) time and linear space (according to Proposition 2.7).
Since the size of an optimal partition is at least two in this case, the resulting
worst-case approximation ratio is ⌈log3 n⌉/2. For circular-arc graphs, the same
idea can be employed, having first extracted a clique as done in the proof of
Corollary 2.8. 2

Note that the construction given at the end of the previous subsection provides
interval graphs for which the worst-case approximation ratio is reached. At our
knowledge, the complexity of partitioning interval graphs (or more generally
arbitrary graphs) into proper interval subgraphs remains unknown.

4 Related problem

In this section, a related problem is addressed: finding a largest proper interval
subgraph in an interval graph. First, an upper bound is given on the size of
such a subgraph.

13

Proposition 4.1 Any split graph contains a proper interval subgraph of size
at least ⌊n/2⌋ + 1, for n ≥ 1. Moreover, for every n ≥ 1, a threshold graph
exists whose largest proper interval subgraph is of size at most ⌈n/2⌉+ 1.

Proof. Let G be a split graph with S the stable set and C the clique set.
If |C| ≥ ⌊n/2⌋, then the subgraph induced by the set C and any vertex of
the set S admits a unit interval representation and the bound is established.
Otherwise, the stable S, inducing trivially a proper interval subgraph, has a
size strictly greater than ⌊n/2⌋.

Here is a threshold graph for which this bound is sharp. Consider a stable S
with ⌈n/2⌉ + 1 vertices such that each vertex of S is connected to ⌊n/2⌋ − 1
vertices inducing a clique C. If a proper interval subgraph contains at least
three vertices of the stable S, then this one has necessarily a size smaller than
⌈n/2⌉ + 1 (because such a subgraph cannot contain one vertex in C without
inducing the claw K1,3). On the other hand, if a proper interval subgraph
contains at most two vertices of S, then this one has a size smaller than
⌊n/2⌋ + 1 (because this subgraph contains at best all the vertices of C plus
the two vertices of S). 2

As for partitioning into proper interval subgraphs, a lower bound can be de-
rived by exhibiting stables or cliques. The Perfect Graph Theorem of Lovász
(cf. [14, pp. 53–58]) provides a first lower bound for the size of a largest
proper interval subgraph in perfect graphs (and a fortiori in interval graphs).
Lovász (cf. [14, pp. 53–58]) has established that if a graph G is perfect, then
ω(G)α(G) ≥ n. This implies that if ω(G) ≤ ⌊

√
n⌋, then α(G) ≥ ⌊

√
n⌋. Con-

sequently, the largest set among a maximum clique and a maximum stable in
a perfect graph induces a proper interval subgraph of size at least ⌊

√
n⌋. But

Proposition 2.7 provides better lower bounds for interval graphs and circular-
arc graphs (which are not all perfect).

Corollary 4.2 Any interval graph (resp. circular-arc graph) contains a proper
interval subgraph of size at least ⌈n/⌈log3 n⌉⌉ (resp. ⌈n/(⌈log3 n⌉+ 1)⌉), for
n > 1. Moreover, such a subgraph is computed in O(n log n + m) time and
linear space.

Proof. According to Proposition 2.7 and Corollary 2.8, any interval graph
(resp. circular-arc graph) admits a partition into at most ⌈log3 n⌉ (resp. ⌈log3 n⌉+
1). By applying the pigeonhole principle, we obtain that at least one of these
subgraphs contains more than ⌈n/⌈log3 n⌉⌉ (resp. ⌈n/(⌈log3 n⌉+ 1)⌉) ver-
tices. 2

14

Note that ⌈n/⌈log3 n⌉⌉ ≥ ⌊
√
n⌋ for all n > 1. This lower bound can be refined

by using the following corollary, which is inspired by Corollary 2.5.

Corollary 4.3 Let G be an interval graph. If 1 ≤ α(G) < t, then G contains a
proper interval subgraph of size at least ⌈n/⌈log3((3t− 3)/2)⌉⌉. If t ≤ α(G) ≤
n, then G contains a proper interval subgraph of size at least t. Moreover, such
a subgraph is computed in O(n log t+m) time and linear space.

Proof. The proof of the first assertion is done by applying Lemma 2.3 and
the pigeonhole principle, as in the proof of the previous corollary. The second
assertion relies on the fact that any stable induces a proper interval graph. 2

Remark 4.4 Here is another formulation of the previous corollary. Let G be
an interval graph satisfying one of the two following conditions, with t = O(1):
(i) G contains no induced copy of K1,t (or no stable of size greater than t); (ii)
G contains an induced copy of K1,n−t (or a stable of size greater than n− t).
Then, G contains a proper interval subgraph of size Ω(n), which is computed
in linear time and space.

According to the previous corollary, we obtain that any interval graph with n
vertices contains a proper interval subgraph of size at least min{⌈n/g0(t)⌉, t}
for any value of t ∈ {2, . . . , n − 2}, with g0(t) = ⌈log3((3t− 3)/2)⌉. Now, we
search the value t for which this expression reaches a maximum. The function
⌈n/g0(t)⌉ is monotonically decreasing, while the function t is monotonically
increasing. Thereby, a lower bound of the maximum sought is ⌈n/g0(⌈t̃⌉)⌉ with
t̃ solution of the equation t = n/g̃0(t) with g̃0(t) = log3(3t/2). The value of t̃
is equal to ñ/W0(βñ) with ñ = n ln 3, β = 3/2 and W0 the principal branch
of the Lambert W function [4].

The Lambert W function satisfies W (z)eW (z) = z for any complex number
z. This function is not injective and have an infinity of branches, with only
one in positive reals. This latter, called principal branch W0, is known in
enumerative combinatorics to be used in the counting of some trees. The
asymptotic behavior of the branch W0 is given by

W0(z) ∼ ln z − ln ln z +
∞∑
k=0

∞∑
m=1

ck,m
(ln ln z)m

(ln z)k+m

where ck,m represents constants not depending from z. When z ≥ e/α, we have
that ln(αz)− ln ln(αz) ≤ W0(αz) ≤ ln(αz). For more details on the Lambert
W function and its principal branch W0, the reader is referred to [4].

Consequently, we have the following upper bound for t̃:

t∗ =
n

log3(β
′n)− log3 ln(β

′n)

15

with β′ = (3 ln 3)/2, and then the following lower bound for ⌈n/g0(⌈t̃⌉)⌉:

⌈n/⌈log3(βt∗)⌉⌉

with β = 3/2. Such a bound can be surrounded as follows for n > 3:⌈
n

⌈log3 n⌉

⌉
≤

⌈
n

⌈log3(βt∗)⌉

⌉
≤

⌈
n

⌈log3(β′n)− log3 log3(β
′n)⌉

⌉

This confirms that the bound ⌈n/⌈log3(βt∗)⌉⌉ outperforms the bound given
in Corollary 4.2.

Proposition 4.5 Any interval graph contains a proper interval subgraph of
size at least  n⌈

log3
(

βn
log3(β

′n)−log3 ln(β
′n)

)⌉


with β = 3/2 and β′ = (3 ln 3)/2, for n > 3. Moreover, such a subgraph is
computed in O(n log(n

logn−log logn
) +m) time and linear space.

Note that a similar lower bound can be derived for circular-arc graphs.

We conclude this section by discussing the complexity of the problem. Finding
the largest proper interval subgraph in an arbitrary graph generalizes the
recognition problem for proper interval graphs, which is solvable in linear
time and space [5,6]. The complexity of this problem has not been elucidated,
even if restricted to interval graphs. Nevertheless, the problem is shown to
be linear-time and space solvable when restricted to the subclass of threshold
graphs.

Proposition 4.6 The problem of finding a largest proper interval subgraph is
solvable in linear-time and space for threshold graphs.

Proof. Remind that a threshold graph admits a partition into one clique
C = C1 ∪ · · · ∪ Cr and one stable S = S1 ∪ · · · ∪ Sr (with r ≤ n and all Ci, Si

non empty except Sr) such that a vertex of Si is adjacent to a vertex of Ci′

if i′ > i for all i, i′ ∈ {1, . . . , r}. Such a representation is computed in linear
time and space, having partitioned the vertices of the graph according to their
degree [14, pp. 223–227].

Any proper interval subgraph of maximum cardinality in a threshold graph
must contain at least one vertex of C. Indeed, if a proper interval subgraph
contains only vertices in S, then the vertices of the set C1 can be added to this
one in order to increase its size (by definition, C1 is not empty and connected
to no set among S1, . . . , Sr). Now, denote by i the largest index such that a
vertex Ci belongs to a maximum proper interval subgraph (1 ≤ i ≤ r). We

16

claim that such a subgraph contains: (i) all the vertices in C1 ∪ · · · ∪ Ci, (ii)
all the vertices in Si ∪ · · · ∪ Sr, (iii) one vertex in S1 ∪ · · · ∪ Si−1 if i > 1. The
assertions (i) and (ii) follow from the fact that any vertex of Ci induces a clique
with the vertices in C1∪· · ·∪Ci while it is adjacent to no vertex in Si, . . . , Sr.
To prove the assertion (iii), one can observe that the subgraph induced by a
vertex of Ci, a vertex of C1 and two vertices in S1∪· · ·∪Si−1 is isomorphic to the
claw K1,3. Then, the size of a maximum proper interval subgraph containing
at least one vertex in Ci is given by ti =

∑i
j=1 |Cj|+

∑r
j=i |Sj| (+1 if i > 1).

Consequently, finding a largest proper interval subgraph in a threshold graph
is reduced to computing the index i (with 1 ≤ i ≤ r) for which the value of ti
is maximum. Carefully implemented, the computation of ti for all i = 1, . . . , r
can be done incrementally in linear time and space. 2

Remark 4.7 According to the previous discussion, the number of maximal
proper interval subgraphs in a threshold graph is exactly r, which is lower than
the number n of vertices.

5 Conclusion

The table below summarizes the results established throughout the paper.
These ones concern the two following problems: (a) partitioning an interval
graph into proper interval subgraphs, (b) finding the largest proper interval
subgraph in an interval graph.

Problem Lower bound Upper bound Complexity

(a) ⌊log3(2n+ 1)⌋ ⌈log3 n⌉ open

(b)

 n⌈
log3

(
βn

log3(β
′n)−log3 ln(β′n)

)⌉ ⌈n/2⌉+ 1 open

All these lower and upper bounds have been obtained by constructive proofs.

5.1 Open questions

The lower and upper bounds established in Theorem 1.1 differ by at most one
for interval graphs. The first values for which lower and upper bounds are not
equal are t = 8, 9 and n = 10, 11, 12 (see the table below).

17

Interval graph Lower bound Upper bound

K1,3-free 1 1

K1,4-free 2 2

K1,5-free 2 2

K1,6-free 2 2

K1,7-free 2 2

K1,8-free 2 3

K1,9-free 2 3

K1,10-free 3 3

K1,t-free ⌊log3(3t− 3)⌋ ⌈log3((3t− 3)/2)⌉

arbitrary ⌊log3(2n+ 1)⌋ ⌈log3 n⌉

For still sharpening bounds of Theorem 1.1, answering to the following ques-
tion seems to be decisive: do K1,8-free (or K1,9-free) interval graphs exist ad-
mitting no partition into less than three proper interval subgraphs? Or does
any K1,8-free (or K1,9-free) interval graph admit a partition into two proper
interval subgraphs? The reader is invited to look at Fig. 7 where is illustrated
an interval graph containing no induced copy of K1,8 but one of K1,7. This
graph, which is not a proper interval graph, admits a partition into three
proper interval subgraphs. But does it admit a partition into two proper in-
terval subgraphs? The answer is yes: the partition is obtained by separating
clear intervals from dark ones on Fig. 7.

R

Fig. 7. An example of challenging K1,8-free interval graph.

More generally, the characterization of interval graphs admitting a partition
into k proper interval subgraphs remains an open question. We have shown
that any interval graph containingHk as induced subgraph admits no partition
into less than k proper interval subgraphs. But is the converse true?

References

[1] B.S. Baker, E.G. Coffman, Jr. (1996). Mutual exclusion scheduling. Theoretical
Computer Science 162, pp. 225–243.

18

[2] H.L. Bodlaender, K. Jansen (1995). Restrictions of graph partition problems.
Part I. Theoretical Computer Science 148, pp. 93–109.

[3] A. Brandstädt, V.B. Le, J.P. Spinrad (1999). Graph Classes: a Survey. SIAM
Monographs on Discrete Mathematics and Applications 3, SIAM Publications,
Philadelphia, PA.

[4] R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, D.E. Knuth (1996). On
the Lambert W function. Advances in Computational Mathematics 5, pp. 329–
359.

[5] D.G. Corneil, H. Kim, S. Natarajan, S. Olariu, A. Sprague (1995). Simple
linear time recognition of unit interval graphs. Information Processing Letters
55, pp. 99–104.

[6] X. Deng, P. Hell, J. Huang (1996). Linear-time representation algorithms
for proper circular-arc graphs and proper interval graphs. SIAM Journal on
Computing 25(2), pp. 390–403.

[7] P.C. Fishburn (1985). Interval Orders and Interval Graphs. Wiley-Interscience
Series in Discrete Mathematics, John Wiley & Sons, New York, NY.

[8] F. Gardi (2004). On partitioning interval and circular-arc graphs into proper
interval subgraphs with applications. In Proceedings of the 6th Latin American
Symposium on Theoretical Informatics (M. Farach-Colton, ed.), Lecture Notes
in Computer Science 2976, pp. 129–140. Springer-Verlag, Berlin, Germany.

[9] F. Gardi (2005). Ordonnancement avec exclusion mutuelle par un graphe
d’intervalles ou d’une classe apparentée: complexité et algorithmes. PhD Thesis.
Université de la Méditerranée - Aix-Marseille II, Marseille, France.
http://www.lif-sud.univ-mrs.fr/~gardi/downloads/These Gardi.pdf

[10] F. Gardi (2006). Mutual exclusion scheduling with interval graphs or related
classes: complexity and algorithms. 4OR, a Quarterly Journal of Operations
Research 4(1), pp. 87–90.

[11] F. Gardi (2007). The Roberts characterization of proper and unit interval
graphs. Discrete Mathematics 307(22), pp. 2906–2908.

[12] F. Gardi (2008). Mutual exclusion scheduling with interval graphs or related
classes. Part II. Discrete Applied Mathematics 156(5), pp. 794–812.

[13] F. Gardi (2009). Mutual exclusion scheduling with interval graphs or related
classes. Part I. Discrete Applied Mathematics 157(1), pp. 19–35.

[14] M.C. Golumbic (1980). Algorithmic Graph Theory and Perfect Graphs.
Computer Science and Applied Mathematics Series, Academic Press, New York,
NY.

[15] U.I. Gupta, D.T. Lee, J.Y.-T. Leung (1982). Efficient algorithms for interval
graphs and circular-arc graphs. Networks 12, pp. 459–467.

19

[16] M. Habib, R.M. McConnell, C. Paul, L. Viennot (2000). Lex-BSF and
partition refinement, with applications to transitive orientation, interval graph
recognition and consecutive ones testing. Theoretical Computer Science 234,
pp. 59–84.

[17] R.M. McConnell (2003). Linear time recognition of circular-arc graphs.
Algorithmica 37(2), pp. 93–147.

[18] F.S. Roberts (1976). Discrete Mathematical Models with Applications to Social,
Biological, and Environmental Problems. Prentice-Hall, Englewood Cliffs, NJ.

[19] F.S. Roberts (1978). Graph Theory and its Application to the Problems of
Society. CBMS-NSF Regional Conference Series in Applied Mathematics 29,
SIAM Publications, Philadelphia, PA.

20

