
A mathematical optimization solver

based on neighborhood search
Julien Darlay

jdarlay@localsolver.com

www.localsolver.com

EA 2017
Paris, France

2 34

Who we are

Bouygues, one of the French largest
corporation, €33 bn in revenues

Operations Research subsidiary of Bouygues
Mathematical optimization solver

http://www.bouygues.com

http://www.localsolver.com

3 34

Swiss Army Knife for math optimization

Model & Run

Discrete, Numerical, Black-Box

Fast & Scalable

Innovative Resolution Technology

4 34

Agenda

1. Origins of LocalSolver

2. Quick tour & examples

3. A look inside LocalSolver

4. How to write good models for LocalSolver

5. New features in LocalSolver 7.5

5 34

Origins of LocalSolver
Automate local search

6 34

Local search

An iterative improvement method
• Explore a neighborhood of the current solution

• Small or large neighborhoods

• First improve

→ Incomplete exploration of the solution space

Essential in combinatorial optimization
• Hidden behind many textbook algorithms (ex: simplex, max flow)

• In the heart of all metaheuristic approaches

• Proved to be inefficient in the worst case

• Largely used because very effective in practice

7 34

Why local search?

When it is hopeless to enumerate
• Large-scale combinatorial problems

• When relaxation or inference brings nothing
(ex: linear relaxation is very fractional)

• When computing relaxation or inference is costly

Adapted to client needs
• Good-quality solution satisfy them

• Fast: each iteration runs in sublinear or even constant time

• Focus only on models

→ Solutions in short running times + ability to scale

8 34

Existing tools

Libraries and frameworks
• Complex to handle

• Limited to practitioners having good programming skills

• Don’t address key points (ex: moves)

Solvers integrating “pure” local search
• Pioneering works in SAT community

• MIP & CP: a few attempts but a limited impact (Nonobe & Ibaraki 2001)

• MIP & CP: a lot of heuristic ingredients but no “pure” local search

9 34

LocalSolver project

2007: Beginning of the project
• Define a generic modeling formalism (close to MIP) suited for a local search-

based resolution (model)

• Develop an effective solver based on pure local search with first principle: “to
do what an expert would do” (run)

2010: First version of LocalSolver
• Large-scale combinatorial problems – especially assignment, packing,

covering, partitioning problems – out of scope of classical solvers

• Integration in our own optimization solutions

• First uses outside LocalSolver

10 34

LocalSolver project

One major version per year focused on functionalities
• Continuous & Integer decisions

• Set based models

• Inconsistency core

• Black-Box optimization

One minor version per year focused on performances
• Continuous optimization algorithms

• MIP techniques

• Preprocessing

11 34

Quick tour & examples

12 34

Knapsack
Given a set of items, each with a weight and a
value, determine a subset of items in such a
way that their total weight is less than a
given bound and their total value is as large
as possible.

function model() {

x[i in 0..nbItems-1] <- bool();
knapsackWeight <- sum[i in 0..nbItems-1](weights[i] * x[i]);
constraint knapsackWeight <= knapsackBound;

knapsackValue <- sum[i in 0..nbItems-1](prices[i] * x[i]);
maximize knapsackValue;

}

Nothing else to write: “model & run” approach
• Straightforward, natural mathematical model

• Direct resolution: no tuning

13 34

Parametric optimization

Maximize the volume of a bucket with a
given surface of metal

𝑟

𝑅

ℎ

𝑉 =
𝜋ℎ

3
(𝑅2 + 𝑅𝑟 + 𝑟2)

S = 𝜋𝑟2 + 𝜋(𝑅 + 𝑟) 𝑅 − 𝑟 2 + ℎ2

function model() {

R <- float(0,1);
r <- float(0,1);
h <- float(0,1);

V <- PI * h / 3.0 * (R*R + R*r + r*r);
S <- PI * r * r + PI*(R+r) * sqrt(pow(R-r,2) + h*h);

constraint S <= 1;
maximize V;

}

14 34

Traveling salesman
Given a list of N cities and the distances
between each pair of cities, what is the
shortest possible route that visits each city
exactly once and returns to the origin city?

MIP models are bad for local search
• 𝑋𝑖𝑗 is one if city 𝑖 is before city 𝑗 in the solution

• Exactly one entering and leaving arc per city

• Subtour eliminations 2𝑛 constraints

Assignment model is a good alternative
• 𝑋𝑖𝑝 is one if city 𝑖 is in position 𝑝 in the tour

• Each city is exactly in one position

• N² Decisions

• N constraints

15 34

Traveling salesman

Efficient model
• Textbook-like (Garey & Johnson)

• Compact

• Highly-scalable

function model() {

x <- list(N) ; // order the N cities {0, ..., N-1} to visit

constraint count(x) == N; // exactly N cities to visit

minimize sum[i in 1..N-1](distance(x[i-1], x[i])) + distance(x[N-1], x[0]); // minimize traveled distance

}

Given a list of N cities and the distances
between each pair of cities, what is the
shortest possible route that visits each city
exactly once and returns to the origin city?

16 34

Mathematical operators

+ operator call : to call an external native function
which can be used to implement your own operator

Decisional Arithmetical Logical Relational Set-related

bool sum sub prod not eq count

float min max abs and neq contains

int div mod sqrt or geq at

list log exp pow xor leq indexOf

cos sin tan iif gt disjoint

floor ceil round array + at lt partition

dist scalar piecewise

17 34

Large-scale instances
• Until 1,300 vehicles to sequence: 400,000 binary decisions

Instance with 540 vehicles
• Small instance: 80,000 variables including 44,000 binary decisions

• State of the art: 3,109 by specific local search (winner of the Challenge)

• Lower bound: 3,103

Results
• MIP Solver: 3.027e+06 in 10 min | 194,161 in 1 hour

• LocalSolver: 3,140 in 10 sec | 3,113 in 10 min

Car sequencing
2005 ROADEF Challenge: http://challenge.roadef.org/2005/en

Minimization

http://challenge.roadef.org/2005/en

18 34

Applications

19 34

A look inside LocalSolver

20 34

The classic in Boolean Programming: “k-flips”
• Lead to infeasible solutions for structured (= real-life) problems

• Feasibility is hard to recover: slow convergence

LocalSolver moves tend to preserve feasibility
• Destroy & repair approach

• Ejection paths in the constraint hypergraph

• More or less specific to some combinatorial structures

Small, structured neighborhoods

21 34

Large neighborhoods

Destroy & Repair
• Break feasibility with one or several moves

• Retrieved it with a series of other moves

Integer programming neighborhood
• Exploit a linear substructure

• Use rounding techniques for integer programming

Direction search
• Compute a good direction

• Line search along this direction

22 34

Incremental evaluation
• Lazy propagation of modifications induced by a move in the DAG

• Exploitation of invariants induced by math operators

→ Millions of moves evaluated per minute of running time

Fast exploration

23 34

Heuristic

Online learning of moves
• Discard inefficient moves

• Improve efficient moves selection

Simulated annealing
• Handle non smooth objectives

• Allow degrading solutions

Restarts + parallel search
• Avoid local optima

• Improve search space coverage

24 34

How to write a good model

25 34

P-Median
Select a subset P among N points and affect
each point in N to a point in P such that the
total distance is minimized

x[1..N] <- bool();
y[1..N][1..N] <- bool();

constraint sum[i in 1..N] (x[i]) <= p;
for[i in 1..N]{

constraint sum[j in 1..N] (y[i][j]) == 1;
}
for[i in 1..N][j in 1..N]{

constraint y[i][j] <= x[j];
}

minimize sum[i in 1..N][j in 1..N] (y[i][j] * w[i][j]);

• N² + N Decisions (ex: N=900)

• N² + N + 1 Constraints

• Needs to simultaneously modify x and y

• 7s to feasibility, gap=350% after 10s 

How can we improve this model for local search ?
• Less decisions

• Less constraints

• Reduce "distance" between feasible solution

26 34

P-Median

y[1..N][1..N] <- bool();

x[j in 1..N] <- or[i in 1..N] (y[i][j]);

for[i in 1..N]{
constraint sum[j in 1..N] (y[i][j]) == 1;

}

constraint sum[i in 1..N] (x[i]) <= p;

minimize sum[i in 1..N][j in 1..N] (y[i][j] * w[i][j]);

Remove decisions and replace them with
possibly non linear expressions

Did we pick the right set of decisions ?

• N² Decisions (ex: N=900)

• N + 1 Constraints

• Feasibility in 4 seconds

• Gap 58% after 10s ☺

27 34

P-Median

x[1..N] <- bool() ;

constraint sum[i in 1..N](x[i]) <= P ;

minDist[i in 1..N] <- min[j in 1..N](x[j] ? Dist[i][j] : Inf) ;

minimize sum[i in 1..N](minDist[i]) ;

Best model for LocalSolver
• N Decisions (ex: N=900)

• 1 Constraint

• Each move can only change 1 decision

• 0s to find feasibility, gap=6% after 10s ☺☺

The decisions are the points in P since the
affectation is not constrained

28 34

New features
LocalSolver 7.5

29 34

Variadic operators

Variadic operators (lambda expressions)

sum(a..b, i => f(i)) = σ𝑖=𝑎
𝑏 𝑓(𝑖)

Dynamic Range [𝑎, 𝑏] Function f(i)

30 34

Vehicle routing

function model() {

x[1..K] <- list(N) ; // for each truck, order the clients to visit

constraint partition(x[1..K]); // each client is visited once

distances[k in 1..K] <- A sum with a variable number of terms

minimize sum[k in 1..K](distances[k]); // minimize total traveled distance

}

TSP VRP

Normal count(x)=N partition(x[1..K])

Prize-collecting maximize sum(…) disjoint(x[1..K])

31 34

Vehicle routing

32 34

Improved large neighborhoods

Continuous Optimization
• Faster computation of first order information

• New neighborhood based on classical algorithms (Conjugate gradient, BFGS)

Mixed Integer optimization
• Better linearization of operators (min, max, and…)

• Larger neighborhood (performance improvement)

33 34

Roadmap

John N. Hooker (2007)
“Good and Bad Futures for Constraint Programming (and Operations Research)”

Constraint Programming Letters 1, pp. 21-32

“Since modeling is the master and computation the servant, no computational
method should presume to have its own solver.

This means there should be no CP solvers, no MIP solvers, and no SAT solvers. All of
these techniques should be available in a single system to solve the model at hand.

They should seamlessly combine to exploit problem structure. Exact methods should
evolve gracefully into inexact and heuristic methods as the problem scales up.”

A mathematical optimization solver

based on neighborhood search
Julien Darlay

jdarlay@localsolver.com

www.localsolver.com

EA 2017
Paris, France

	Slide 1
	Slide 2: Who we are
	Slide 3: Swiss Army Knife for math optimization
	Slide 4: Agenda
	Slide 5: Origins of LocalSolver
	Slide 6: Local search
	Slide 7: Why local search?
	Slide 8: Existing tools
	Slide 9: LocalSolver project
	Slide 10: LocalSolver project
	Slide 11: Quick tour & examples
	Slide 12: Knapsack
	Slide 13: Parametric optimization
	Slide 14: Traveling salesman
	Slide 15: Traveling salesman
	Slide 16: Mathematical operators
	Slide 17: Car sequencing
	Slide 18: Applications
	Slide 19: A look inside LocalSolver
	Slide 20: Small, structured neighborhoods
	Slide 21: Large neighborhoods
	Slide 22: Fast exploration
	Slide 23: Heuristic
	Slide 24: How to write a good model
	Slide 25: P-Median
	Slide 26: P-Median
	Slide 27: P-Median
	Slide 28: New features
	Slide 29: Variadic operators
	Slide 30: Vehicle routing
	Slide 31: Vehicle routing
	Slide 32: Improved large neighborhoods
	Slide 33: Roadmap
	Slide 34

