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L ocalSolver

Solver for combinatorial & continuous optimization
e Simple mathematical modeling formalism
» C++, Java, .NET APIs, R
» Modeling Language (LSP)
* Allows to tackle large-scale problems

* Provides good-quality solutions in short running times

Free academic licenses
Renting offers from S30€ / month

Perpetual licenses from 9900 €
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LocalSolver 4.5

Mathematical programming solver

For combinatorial optimization
For numerical optimization

For mixed-variable optimization

Provides solutions (upper bounds)
Provides lower bounds

Infeasibility gap/proof, optimality gap/proof

Suited for large-scale non-convex optimization

Millions of combinatorial and/or continuous variables

Non-convex constraints and/or objectives

Short resolution times

LocalSolver
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Examples
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Numerical optimization

Smallest Circle
* Find the circle of minimum radius including a set of points
* Two continuous decisions: x and y
* The radius r: expression deduced from decisions

e Straightforward quadratic model

Continuous decision
Quadratic expression

X <- float(minX, maxX);
y <- float(miny, maxy);

r2 <- max[i in 1..n] (pow(x-coordX[i],2) + pow(y-coordY[i],2));

minimize sqrt(r2);
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Non convex constrained optimization

K-means

* Find a partition of a set of N observations into K classes to minimize the
within-cluster sum of squares

e NP-Hard, Quadratic
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Non convex constrained optimization

K-means

for[1 in 1..k]J[j in 1..D]{
x[i][j] <- float(mini[j],maxi[j]1);

}

for[i in 1..N]{
d[i] <- min[1 in 1..k]J(Csum[j in 1..DJC(x[11L3] - MLi1L31)0A2));
}

minimize sum[i in 1..nbLines](d[i1]);

Instance K OPT* LS 4.0 GAP
iris 2 152,348 152,369 0,01%
3 78,8514 78,9412 0,11%

4 57,2285 57,3556 0,22%

5 46,4462 46,5363 0,19%

6 39,04 41,7964 7,06%

7 34,2982 34,6489 1,02%

8 29,9889 30,3029 1,05%

9 27,7861 28,0667 1,01%

10 25,834 26,0521 0,84%
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Constrained combinatorial optimization

P-Median

* Find a subset of P elements in a set of N

e Minimize the sum of distances from each element to the closest one in P

R

function model() {
X[1..N] <- bool();
constraint suml[i in 1..N] (x[i]) == P;

minDistance[i in 1..N] <- min[j in 1..N] (x[j] ? distance[i][j] : +inf);
minimize suml[i in 1..N] (minDistancel[i]);

}
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Local Search / Direct Search
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Local Search

Main idea for combinatorial optimization
e Sequential modification of a small number of decisions
* Maintaining the feasibility of current solution

* Incremental evaluation, generally in O(1) time

— Small improvement probability but small time and space complexity

— Simple extension to direct search in continuous optimization

A three layers architecture 2.

* Moves based on mathematical model ‘ @
* |ncremental evaluation of solutions
 Heuristic to drive the search ‘ ‘ @

® 6 O
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Moves

Standard moves in combinatorial optimization: “k-flips”

* Could lead to infeasible solution on real instances

» If feasibility is hard to reach: slow convergence

LocalSolver maintains feasibility
* « Destroy & repair »
* Ejection chain on constraint graph

e Use of known combinatorial structure

x[1..N] <= boolQ);
constraint sum[i in 1..N] (x[1]) == P;
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Fast exploration

x1 <- bool();

x2 <- bool();

x3 <- bool();

y1 <= bool();

y2 <= bool();

y3 <= bool();

sx <- sum(xl, x2, x3);
sy <- sum(yl, y2, y3);
constraint leq(sx, 2);
constraint geq(sy, 2);
obj <- max(sx, sy);
minimize obj;

Incremental evaluation

e “Lazy” propagation in the expression DAG

e Usage of invariants

— Millions of moves per minute
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Online learning of moves
* Discard inefficient moves

* Improve efficient moves selection

Simulated annealing
* Handle non smooth objectives

* Allow degrading solutions

« Restart » + parallel search
* Avoid local optima

* Improve search space coverage
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Benchmarks
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Combinatorial optimization

Car Sequencing : schedule cars among an assembly line

_____

Gurobi 5.5
LocalSolver 4.0

_____

Gurobhi 5.5
LocalSolver 4.0

_____

Gurobi 5.5
LocalSolver 4.0 4 *0 *0 2 *0
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Nonconvex optimization

Nearly optimal solution in a few seconds on several artificial
landscape from the literature

Oldenhuis (2009). Test functions for global optimization algorithms. Matlab

” flx,y) = =20 exp (—[].21,#[).5 (x? + ‘yg))

v & —exp (0.5 (cos (2mx) + cos (27y))) + 20 + €. gap (%) <10°

flz,y) = —(y+47)sin( ‘y+%+47‘) —:t:sin( |$—(y+47)|). gap (%) < 10'4

o) = = sina) costy)exp ([t - YL gap (%) < 10

- Dhusi=10d+5n  n=10>10000  gap (%) <10°-> 107
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K-means

K_ m ea nS Instance k OPT* LS 4.0 GAP
_ _ ruspini 2 89337 89337,9 0,00%
Machine learning problem 3 51063,4 51063,5 0,00%
4 12881 12881,1 0,00%

5 10126,7 10126,8 0,00%

6 8575,41 8670,86 1,11%

7 7126,2 7159,13 0,46%

Do, 00 8 6149,64 6158,26 0,14%

"o, 8 %o 9 5181,64 5277,11 1,84%

° o ] 10 4446,28 4856,98 9,24%

o o . iris 2 152,348 152,369 0,01%

o §o o, oo 3 78,8514 78,9412 0,11%

4 57,2285 57,3556 0,22%

i o ° 5 46,4462 46,5363 0,19%

] 6 39,04 41,7964 7,06%
S oo d g 7 34,2982 34,6489 1,02%
o, @ s 8 29,9889 30,3029 1,05%
0 o 9 27,7861 28,0667 1,01%
10 25,834 26,0521 0,84%

o O glass 20 114,646 120,048 4,71%

i T 30 63,2478 74,1251 17,20%

0 ©® g 40 39,4983 58,3912 47,83%

o 50 26,7675 52,4679 96,01%

*[Aloise et al. 2012]
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Conclusion
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Toward an “all-in-one” solver

One solver to tackle all kinds of problems

Discrete, numerical, or mixed-variable optimization
From small-scale to large-scale problems

Best effort to prove infeasibility or optimality

Able to scale heuristically faced with large problems

Black box optimization

One solver offering the best of all optimization techniques

Local and direct search

Constraint propagation and inference

Linear and mixed-integer programming
Nonlinear programming (convex and non-convex)
Dynamic programming

Specific algorithms: paths, trees, flows, matchings, etc.
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