
1/18

LocalSolver
A New Kind of Math Programming Solver

www.localsolver.com

Thierry Benoist Julien Darlay Bertrand Estellon
Frédéric Gardi Romain Megel

jdarlay@localsolver.com

2 20

Who are we ?

Bouygues, one of the French largest
corporation, €33 bn in revenues

Operation Research subsidiary
of the Bouygues group

LocalSolver, mathematical optimization
solver commercialized by Innovation 24

http://www.bouygues.com

http://www.innovation24.fr

http://www.localsolver.com

3 20

LocalSolver

Solver for combinatorial & continuous optimization
• Simple mathematical modeling formalism

 C++, Java, .NET APIs, R

 Modeling Language (LSP)

• Allows to tackle large-scale problems

• Provides good-quality solutions in short running times

Free academic licenses

Renting offers from 590€ / month

Perpetual licenses from 9900 €

4 20

LocalSolver 4.5

Mathematical programming solver
• For combinatorial optimization

• For numerical optimization

• For mixed-variable optimization

• Provides solutions (upper bounds)

• Provides lower bounds

• Infeasibility gap/proof, optimality gap/proof

Suited for large-scale non-convex optimization
• Millions of combinatorial and/or continuous variables

• Non-convex constraints and/or objectives

• Short resolution times

5 20

Examples

6 20

Numerical optimization

Smallest Circle
• Find the circle of minimum radius including a set of points

• Two continuous decisions: x and y

• The radius r: expression deduced from decisions

• Straightforward quadratic model

x <- float(minX, maxX);
y <- float(minY, maxY);

r2 <- max[i in 1..n] (pow(x-coordX[i],2) + pow(y-coordY[i],2));

minimize sqrt(r2);

Continuous decision

Quadratic expression

7 20

Non convex constrained optimization

K-means
• Find a partition of a set of N observations into K classes to minimize the

within-cluster sum of squares

• NP-Hard, Quadratic

8 20

Non convex constrained optimization

for[i in 1..k][j in 1..D]{
x[i][j] <- float(mini[j],maxi[j]);

}

for[i in 1..N]{
d[i] <- min[l in 1..k](sum[j in 1..D]((x[l][j] - M[i][j])^2));

}

minimize sum[i in 1..nbLines](d[i]);

Instance k OPT* LS 4.0 GAP

iris 2 152,348 152,369 0,01%

3 78,8514 78,9412 0,11%

4 57,2285 57,3556 0,22%

5 46,4462 46,5363 0,19%

6 39,04 41,7964 7,06%

7 34,2982 34,6489 1,02%

8 29,9889 30,3029 1,05%

9 27,7861 28,0667 1,01%

10 25,834 26,0521 0,84%

K-means

9 20

Constrained combinatorial optimization

P-Median
• Find a subset of P elements in a set of N

• Minimize the sum of distances from each element to the closest one in P

function model() {
x[1..N] <- bool();
constraint sum[i in 1..N] (x[i]) == P;

minDistance[i in 1..N] <- min[j in 1..N] (x[j] ? distance[i][j] : +inf);
minimize sum[i in 1..N] (minDistance[i]);

}

10 20

Local Search / Direct Search

11 20

Local Search

Main idea for combinatorial optimization
• Sequential modification of a small number of decisions

• Maintaining the feasibility of current solution

• Incremental evaluation, generally in O(1) time

→ Small improvement probability but small time and space complexity

→ Simple extension to direct search in continuous optimization

A three layers architecture
• Moves based on mathematical model

• Incremental evaluation of solutions

• Heuristic to drive the search


6

3

3

2

12 20

Standard moves in combinatorial optimization: “k-flips”
• Could lead to infeasible solution on real instances

• If feasibility is hard to reach: slow convergence

LocalSolver maintains feasibility
• « Destroy & repair »

• Ejection chain on constraint graph

• Use of known combinatorial structure

Moves

...
x[1..N] <- bool();
constraint sum[i in 1..N] (x[i]) == P;
...

13 20

Incremental evaluation
• “Lazy” propagation in the expression DAG

• Usage of invariants

→ Millions of moves per minute

Fast exploration

t t

t t

ttt

t t t

t t

14 20

Heuristic

Online learning of moves
• Discard inefficient moves

• Improve efficient moves selection

Simulated annealing
• Handle non smooth objectives

• Allow degrading solutions

« Restart » + parallel search
• Avoid local optima

• Improve search space coverage t t

ttt

t t t

t t

t t

15 20

Benchmarks

16 20

Combinatorial optimization
Car Sequencing : schedule cars among an assembly line

10 sec 100 200 300 400 500

Gurobi 5.5 140 274 X 429 513

LocalSolver 4.0 8 5 8 10 19

60 sec 100 200 300 400 500

Gurobi 5.5 3 66 1 356 513

LocalSolver 4.0 6 4 3 5 6

600 sec 100 200 300 400 500

Gurobi 5.5 3 2 *0 1 20

LocalSolver 4.0 4 *0 *0 2 *0

17 20

Nonconvex optimization

Nearly optimal solution in a few seconds on several artificial
landscape from the literature
Oldenhuis (2009). Test functions for global optimization algorithms. Matlab

gap (%) < 10-6

gap (%) < 10-4

gap (%) < 10-4

gap (%) < 10-6
 10-1n = 10  10000

18 20

K-means

K-means
Machine learning problem

Instance k OPT* LS 4.0 GAP

ruspini 2 89337 89337,9 0,00%

3 51063,4 51063,5 0,00%

4 12881 12881,1 0,00%

5 10126,7 10126,8 0,00%

6 8575,41 8670,86 1,11%

7 7126,2 7159,13 0,46%

8 6149,64 6158,26 0,14%

9 5181,64 5277,11 1,84%

10 4446,28 4856,98 9,24%

iris 2 152,348 152,369 0,01%

3 78,8514 78,9412 0,11%

4 57,2285 57,3556 0,22%

5 46,4462 46,5363 0,19%

6 39,04 41,7964 7,06%

7 34,2982 34,6489 1,02%

8 29,9889 30,3029 1,05%

9 27,7861 28,0667 1,01%

10 25,834 26,0521 0,84%

glass 20 114,646 120,048 4,71%

30 63,2478 74,1251 17,20%

40 39,4983 58,3912 47,83%

50 26,7675 52,4679 96,01%

*[Aloise et al. 2012]

19 20

Conclusion

20 20

Toward an “all-in-one” solver

One solver to tackle all kinds of problems
• Discrete, numerical, or mixed-variable optimization

• From small-scale to large-scale problems

• Best effort to prove infeasibility or optimality

• Able to scale heuristically faced with large problems

• Black box optimization

One solver offering the best of all optimization techniques
• Local and direct search

• Constraint propagation and inference

• Linear and mixed-integer programming

• Nonlinear programming (convex and non-convex)

• Dynamic programming

• Specific algorithms: paths, trees, flows, matchings, etc.

1/18

LocalSolver
A New Kind of Math Programming Solver

www.localsolver.com

Thierry Benoist Julien Darlay Bertrand Estellon
Frédéric Gardi Romain Megel

jdarlay@localsolver.com

