
A mathematical optimization solver
based on neighborhood search

Thierry Benoist, Julien Darlay, Bertrand Estellon,
Frédéric Gardi, Romain Megel, Clément Pajean

Innovation 24 & LocalSolver

www.localsolver.com

MIC 2015
Agadir, Morocco

2 29

Who we are

Bouygues, one of the French largest
corporation, €33 bn in revenues

Operations Research subsidiary of Bouygues
15 years of practice and research

Mathematical optimization solver
commercialized by Innovation 24

http://www.bouygues.com

http://www.innovation24.fr

http://www.localsolver.com

3 29

LocalSolver

Hybrid optimization solver

For combinatorial, numerical,
or mixed-variable optimization

Suited for large-scale
non-convex optimization

High-quality solutions in seconds
without tuning

LocalSolver
=

LS + CP/SAT + LP/MIP + NLP

free trial with support – free for academics - renting licenses
from 590 €/month - perpetual licenses from 9900 €

www.localsolver.com

4 29

Why LocalSolver, originally?
Automating local search

5 29

Local search

An iterative improvement method
• Explore a neighborhood of the current solution

• Smaller or larger neighborhoods

→ Incomplete exploration of the solution space

Essential in combinatorial optimization
• Hidden behind many textbook algorithms (ex: simplex, max flow)

• In the heart of all metaheuristic approaches

• Proved to be inefficient in the worst case

• Largely used because very effective in practice

6 29

Why local search?

When it is hopeless to enumerate
• Large-scale combinatorial problems

• When relaxation or inference brings nothing
(ex: linear relaxation is very fractional)

• When computing relaxation or inference is costly

Adapted to client needs
• Good-quality optima satisfy them

• Fast: each iteration runs in sublinear or even constant time

→ Solutions in short running times + ability to scale

7 29

Existing tools

Libraries and frameworks
• Complex to handle

• Limited to practitioners having good programming skills

• Don’t address key points (ex: moves)

Solvers integrating “pure” local search
• Pioneering works in SAT community

• MIP & CP: a few attempts but a limited impact (Nonobe & Ibaraki 2001)

• MIP & CP: a lot of heuristic ingredients but no “pure” local search

8 29

LocalSolver project

2007: launch
• Define a generic modeling formalism (close to MIP) suited for a local search-

based resolution (model)

• Develop an effective solver based on pure local search with first principle: “to
do what an expert would do” (run)

2010: first release
• Large-scale combinatorial problems – especially assignment, packing,

covering, partitioning problems – out of scope of classical solvers

• Integration in Innovation 24’s optimization solutions

• First uses outside Innovation 24

9 29

P-median

Select a subset P among N points minimizing the sum of distances
from each point in N to the nearest point in P

function model() {

x[1..N] <- bool() ; // decisions: point i belongs to P if x[i] = 1

constraint sum[i in 1..N](x[i]) == P ; // constraint: P points selected among N

minDist[i in 1..N] <- min[j in 1..N](x[j] ? Dist[i][j] : InfiniteDist) ; // expressions: distance to the nearest point in P

minimize sum[i in 1..N](minDist[i]) ; // objective: to minimize the sum of distances

}

Nothing else to write: “model & run” approach
• Straightforward, natural mathematical model

• Direct resolution: no tuning

10 29

Bucket Optimization

Maximize the volume of a bucket with a given surface of metal*

*http://datagenetics.com

𝑟

𝑅

ℎ

𝑉 =
𝜋ℎ

3
(𝑅2 + 𝑅𝑟 + 𝑟2)

S = 𝜋𝑟2 + 𝜋(𝑅 + 𝑟) 𝑅 − 𝑟 2 + ℎ2

function model() {

R <- float(0,1);
r <- float(0,1);
h <- float(0,1);

V <- PI * h / 3.0 * (R*R + R*r + r*r);
S <- PI * r * r + PI*(R+r) * sqrt(pow(R-r,2) + h*h);

constraint S <= 1;
maximize V;

}

11 29

Mathematical operators

Arithmetic Logical Relational

sum sub prod not ==

min max abs and !=

div mod sqrt or <=

log exp pow xor >=

cos sin tan if <

floor ceil round array + at >

Decisional

bool

float

int

New in 5.0: operator piecewise to model piecewise linear functions

12 29

The classic in Boolean Programming: “k-flips”
• Lead to infeasible solutions for structured (= real-life) problems

• Feasibility is hard to recover: slow convergence

LocalSolver moves tend to preserve feasibility
• Destroy & repair approach

• Ejection paths in the constraint hypergraph

• More or less specific to some combinatorial structures

Small, structured neighborhoods

13 29

Large neighborhoods

Move Sequence
• Break feasibilty with one move

• Retrieved it with a series of other moves

Move Simplex
• Exploit a linear substructure

• Use rounding techniques for integer programming

Gradient
• Compute a finite differences gradient

• Line search along the gradient

14 29

Incremental evaluation
• Lazy propagation of modifications induced by a move in the DAG

• Exploitation of invariants induced by math operators

→ Millions of moves evaluated per minute of running time

Fast exploration

15 29

Heuristic

Online learning of moves
• Discard inefficient moves

• Improve efficient moves selection

Simulated annealing
• Handle non smooth objectives

• Allow degrading solutions

« Restart » + parallel search
• Avoid local optima

• Improve search space coverage

16 29

Large-scale instances
• Until 1,300 vehicles to sequence: 400,000 binary decisions

Instance with 540 vehicles
• Small instance: 80,000 variables including 44,000 binary decisions

• State of the art: 3,109 by specific local search (winner of the Challenge)

• Lower bound: 3,103

Results
• Gurobi 5.5: 3.027e+06 in 10 min | 194,161 in 1 hour

• LocalSolver 5.0: 3,140 in 10 sec | 3,113 in 10 min

Car sequencing
2005 ROADEF Challenge: http://challenge.roadef.org/2005/en

Minimization

http://challenge.roadef.org/2005/en

17 29

Supply chain optimization

Global supply chain optimization
• Both production and logistics optimization

• 10 factories, each with several production lines

• Large number of stores and distribution centers

A challenging context for LocalSolver
• 20,000,000 expressions including 3 million binaries

• Rich model involving setup costs, delivery times, packaging, etc.

• Vain attempts to solve the problem with MIP solvers

• LocalSolver finds high-quality solutions in 5 minutes

18 29

Application panorama
TV media planning

Outdoor & indoor advertising

Logistic clustering and routing

Road maintenance planning

Network deployment planning

Loan assembling optimization

Placement of nuclear fuel assemblies in pools

Airline network management

Weapon resource allocation

Packing and transportation of military equipment

19 29

Where LocalSolver goes?
Novelties coming in June

20 29

Structured decisional operator list(n)
• Order a subset of values in domain {0, …, n-1}

• Each value is unique in the list

Classical operators to interact with “list”
• count(u): number of values selected in the list

• get(u,i) or u[i]: value at index i in the list

• indexOf(u,v): index of value v in the list

• contains(u,v): equivalent to “indexOf(u,v) != -1”

• disjoint(u1, u2, …, uk): true if u1, u2, …, uk are pairwise disjoint

• partition(u1, u2, …, uk): true if u1, u2, …, uk induce a partition of {0, …, n-1}

Set-based modeling

21 29

Traveling salesman

function model() {

x <- list(N) ; // order n cities {0, ..., n-1} to visit

constraint count(x) == N; // exactly n cities to visit

minimize sum[i in 1..N-1](Dist[x[i-1]][x[i]])
+ Dist[x[N-1]][x[0]] ; // minimize sum of traveled distances

}

Could you imagine simpler model?
• Natural declarative model: straightforward to understand

• Common set-oriented concepts: easy to learn

• Even easier for people with basic programming skills

• Compact: linear in the size of input  highly scalable

22 29

Vehicle routing
function model() {

x[1..K] <- list(N) ; // for each truck, order the clients to visit

constraint partition(x[1..K]); // each client is visited once

distances[k in 1..K] <- sum[i in 1..N-1](dist(x[k][i-1], x[k][i]))
+ dist(x[k][N-1], x[k][0]); // traveled distance for each truck

minimize sum[k in 1..K](distances[k]); // minimize total traveled distance

}

To go further, to make it simpler
• Sets (unordered) versus lists (ordered)

• Multi-sets/lists: multiple occurrence of the same values

• Collections of objects instead of values

• Ability to iterate and project over collections (lambda expressions)

23 29

CVRP benchmarks

CVRP - instances A
• 32 to 80 clients, 10 trucks max.

• 27 instances

• 5 minutes of running time

• LS binary: 3 % avg. opt. gap

• LS list: 1 % avg. opt. gap

CVRP - instances X100-500
• 100 to 500 clients, 138 trucks max.

• 67 instances

• 5 minutes of running time

• LS binary: N/A

• LS list: 9 % avg. opt. gap

24 29

CVRPTW benchmarks

CVRPTW - instances Solomon R100
• 101 to 112 clients, 19 trucks max.

• 13 instances

• 5 minutes of running time

• LS binary: N/A

• LS list: 3 % avg. opt. gap

CVRPTW - instances Solomon R200
• 201 to 208 clients, 4 trucks max.

• 8 instances

• 5 minutes of running time

• LS binary: N/A

• LS list: 8 % avg. opt. gap

25 29

Black-box optimization

Context
• Unknown objective (oracle)

• Costly to evaluate

• Derivative-free

• Continuous & integer decisions

• Bounds on decisions

Many applications in engineering
• Multidisciplinary/parametric optimization

• Simulation optimization (noisy, nondeterministic)

 Design optimization of materials/systems: mechanics, electricity, logistics, etc.

26 29

Learning

Learn the objective function landscape
• Objective landscape modeled by Radial Basis Functions

• Several models are built with different techniques/parameters

• Automatic selection of the most promising models for optimization

Objective Function Objective Model

27 29

Optimization

Exploitation & diversification
• Exploitation: optimize over the objective model

• Diversification: explore new promising regions

 NLP subproblems solved through LocalSolver techniques:
local & direct search, gradient-based line search, etc.

Objective Function Objective Model

28 29

Benchmark

Instances
• 25 instances from the recent paper by Costa and Nannicini.

RBFOpt: an open-source library for black-box optimization with costly
function evaluations. Optimization Online. (under review)

• 20 runs per instance, 150 calls max. to the black-box per run

• Numerical precision: 1e-6

Preliminary results
• RBFOpt: 345 opt. solutions found, 82 calls avg. per run

• LocalSolver: 310 opt. solutions found, 94 calls avg. per run

• NOMAD (GERAD): 170 opt. solutions found (default params)

29 29

Roadmap

John N. Hooker (2007)
“Good and Bad Futures for Constraint Programming (and Operations Research)”

Constraint Programming Letters 1, pp. 21-32

“Since modeling is the master and computation the servant, no computational
method should presume to have its own solver.

This means there should be no CP solvers, no MIP solvers, and no SAT solvers. All of
these techniques should be available in a single system to solve the model at hand.

They should seamlessly combine to exploit problem structure. Exact methods should
evolve gracefully into inexact and heuristic methods as the problem scales up.”

A mathematical optimization solver
based on neighborhood search

Thierry Benoist, Julien Darlay, Bertrand Estellon,
Frédéric Gardi, Romain Megel, Clément Pajean

Innovation 24 & LocalSolver

www.localsolver.com

MIC 2015
Agadir, Morocco

