«:LocalSolver

LocalSolver

A New Kind of Math Programming Solver

Thierry Benoist  Julien Darlay Bertrand Estellon
Frédeéric Gardi  Romain Megel

jdarlay@localsolver.com

www.localsolver.com



Innovation24

LocalSolver

Diversified industrial group focused on

construction, telecom and media
http://www.bouygues.com

Optimization subsidiary of Bouygues

15 years of experience in Operations Research
http://www.innovation24.fr

Math programming solver

for combinatorial or mixed optimization
http://www.localsolver.com

2|14



L ocalSolver

Solver for combinatorial & continuous optimization
e Simple mathematical modeling formalism
* Allows to tackle large-scale problems

* Provides good-quality solutions in short running times

Solver based on local search
* Moves based on decisions/constraints hypergraph
* Incremental evaluation: millions of moves per minute

* Adaptive, randomized, parallelized simulated annealing with restarts

Free academic licenses

Commercial licenses from 990 €

LocalSolver 3|14



LocalSolver 4.0

Mathematical programming solver

For combinatorial optimization
For numerical optimization

For mixed-variable optimization

Provides solutions (upper bounds)
Provides lower bounds

Infeasibility gap/proof, optimality gap/proof

Suited for large-scale non-convex optimization

Millions of combinatorial and/or continuous variables

Non-convex constraints and/or objectives

Short resolution times

LocalSolver

4l14



Numerical optimization

Smallest Circle
* Find the circle of minimum radius including a set of points
* Two continuous decisions: x and y
* The radius r: expression deduced from decisions

e Straightforward quadratic model

Continuous decision
Quadratic expression

X <- float(minX, maxX);
y <- float(miny, maxy);

r2 <- max[i in 1..n] (pow(x-coordX[i],2) + pow(y-coordY[i],2));

minimize sqrt(r2);

LocalSolver

5|14



Non convex constrained optimization

K-means

* Find a partition of a set of N observations into K classes to minimize the
within-cluster sum of squares

e NP-Hard, Quadratic

LocalSolver 6|14



Non convex constrained optimization

K-means

for[1 in 1..k]J[j in 1..D]{
x[i][j] <- float(mini[j],maxi[j]1);

}

for[i in 1..N]{
d[i] <- min[1 in 1..k]J(Csum[j in 1..DJC(x[11L3] - MLi1L31)0A2));
}

minimize sum[i in 1..nbLines](d[i1]);

Instance K OPT* LS 4.0 GAP
iris 2 152,348 152,369 0,01%
3 78,8514 78,9412 0,11%

4 57,2285 57,3556 0,22%

5 46,4462 46,5363 0,19%

6 39,04 41,7964 7,06%

7 34,2982 34,6489 1,02%

8 29,9889 30,3029 1,05%

9 27,7861 28,0667 1,01%

10 25,834 26,0521 0,84%

LocalSolver I



Constrained combinatorial optimization

Binary feature selection
* Choose the minimum number of features
e Distinguish between positive and negative observations
e Usefull to find “patterns” inside the dataset

 NP-Hard problem

Ga loguosio | Faigue | Swgeny pan  |Fever

1 Negative 0 1 0 0
2 Negative 0 1 0 1
3 Negative 1 1 0 0
4 Negative 1 0 1 0
5 Positive 1 1 1 1
6 Positive 1 0 1 1
7 Positive 0 1 1 1
8 Positive 1 1 0 1

LocalSolver gl14



Constrained combinatorial optimization

Binary feature selection

x[1..M] <- bool(Q);

}

for[i in 1..nbObs :
constraint sum[k in 1..M: m[i][k] != m[j][k]] (x[k]) >=

classes[i] == 1][]j in 1..nbObs: classes[j]==

minimize sum[i in 1..M] (x[1]);

0]
1;

Go lougnosic | Faugue | sugery | pam LFever

Negative

0 N o 0o b~ W N P

Negative
Negative
Negative
Positive
Positive
Positive

Positive

B O B B B B O O

0
0
0
1
1
1
1
0

LocalSolver

P P P RBP O O L O

9|14



Constrained combinatorial optimization

P-Median

* Find a subset of P elements in a set of N

e Minimize the sum of distances from each element to the closest one in P

R

function model() {
X[1..N] <- bool();
constraint suml[i in 1..N] (x[i]) == P;

minDistance[i in 1..N] <- min[j in 1..N] (x[j] ? distance[i][j] : +inf);
minimize suml[i in 1..N] (minDistancel[i]);

}

LocalSolver 10|14



L ocal search

Main idea for combinatorial optimization
e Sequential modification of a small number of decisions
* Maintaining the feasibility of current solution

* Incremental evaluation, generally in O(1) time

— Small improvement probability but small time and space complexity

In continuous optimization?
 Known under another name: direct = derivative-free = zeroth-order search
* Don’t use gradients (1%t order) nor Hessian (2" order)
* Ex: Nelder-Mead simplex algorithm

* Mainly used in unconstrained non-convex optimization

LocalSolver 11]14



Neighborhoods

Standard moves in combinatorial optimization: “k-flips”
 Could lead to infeasible solution on real instances

» If feasibility is hard to reach: slow convergence

LocalSolver maintains feasibility
* « Destroy & repair »
* Ejection chain on constraint graph

e Use of known combinatorial structure

L7T 7T £6T
Ty g \ ) T5
4 \
Cﬁ ey
!K \IL
la 01 04 xl
\ /
“ /
~ h! 02 @j 03 .”‘_
JZ‘QT \H““‘j//j{j JHE_FH,’ £4T
3

LocalSolver 12]14



Fast exploration

x1 <- bool();
X2 <- bool();
x3 <- bool();
y1 <= bool();
y2 <= bool();
y3 <= bool();

sx <- sum(xl, x2, x3);
sy <- sum(yl, y2, y3);
constraint leq(sx, 2);
constraint geq(sy, 2);

obj <- max(sx, sy);
minimize obj;

Incremental evaluation

minimize

[ bool | [ bool] [ bool| [ bool| [ bool| [ bool|

LX]J L XQJ L x3/| L le L }'2J| L y3j|

e “Lazy” propagation in the expression DAG

e Usage of invariants

— Millions of moves per minute

LocalSolver

1314



Toward an “all-in-one” solver

One solver to tackle all kinds of problems

Discrete, numerical, or mixed-variable optimization
From small-scale to large-scale problems
Best effort to prove infeasibility or optimality

Able to scale heuristically faced with large problems

One solver offering the best of all optimization techniques

Local and direct search

Constraint propagation and inference

Linear and mixed-integer programming
Nonlinear programming (convex and non-convex)
Dynamic programming

Specific algorithms: paths, trees, flows, matchings, etc.

LocalSolver

14|14



«:LocalSolver

LocalSolver

A New Kind of Math Programming Solver

Thierry Benoist  Julien Darlay Bertrand Estellon
Frédeéric Gardi  Romain Megel

jdarlay@localsolver.com

www.localsolver.com



