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Motivations

Modeling approaches for
the 7raveling Salesman Problem



Mixed-Integer Programming

With an exponential number of constraints
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In Orman & Williams : A survey of different integer programming formulations of the TSP



LocalSolver 5.0

A compact model based on positions

/* Declares the optimization model. */

Bfunction model () {

// x[i]1[3] equal to 1 if city J is ith visited city in the tour
X[0..nbCities-1]1[0..nbCities-1] <- bool() ;

// one city per position jJ
for [1 in 0..nbCities-1] constraint sum([j in 0..nbCities-1]1(x[i]I[3J]) == 1;
// one position per city J

for [J in O0..nbCities-1] constraint sum[ji in 0..nbCities-1]1(x[i]I[J]) == 1;

//city[i] is the city at position i in the tour
city[i in O0..nbCities-1] <- sum[] in 0..nbCities-1]1(J*x[1]1I[21);

// Distance of the arc reaching the ith city
distance[0] <- distanceWeight[citj[nbcities - 111 [city[01];

distance[j in 1..nbCities - 1] <- distanceWeight[city[i - 11]1[city[il];

// Minimize the total distance
obl <- sum[i in 0..nbCities - 1] (distancel[i]);

minimize gbj;
- A polynomial-size model (not an iterative procedure)

- No artificial variables and constraints

—> But still based on binary decisions
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Natural Modeling

As a permutation

The Traveling Salesman Problem (TSP)

TSP: Given a list of cities and their pairwise
distances, find a shortest possible tour that
visits each city exactly once.

Objective: find a permutation a,,...,a, of
the cities that minimizes

d(ai,a2) + d(as,as) + ...+
d(an—laan) 4 d(a‘naa‘l)

AUSTRIA
50100 km

—_—
80 100 mi

where d(i, j) is the distance between A7 oPimal 188 tour farough
‘e - ermany’s 15 largest cities
cities i and j

In Kenneth R. Rosen: Permutations and Combinations.
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Reference modeling

Garey & Johnson

[ND22] TRAVELING SALESMAN

INSTANCE: Set C of m cities, distance d(c;,c;) € Z* for each pair of cities
¢i,¢; € C, positive integer B.

QUESTION: Is there a tour of C having length B or less, i.e., a permutation
< Cr1)sCx () + « + » Cu(m) > Of C such that

m—1

2. d(CnnCrian) | + d(caimyrCnay) < B ?

i=1



Set-based modeling

Innovative modeling concepts
For routing & scheduling problems



List Variables

Structured decisional operator list(n)

Order a subset of values in domain {0, ..., n-1}

Each value is unique in the list

Classical operators to interact with “list”

count(u): number of values selected in the list
at(u,i) or u[i]: value at index i in the list
indexOf(u,v): index of value v in the list
contains(u,v): equivalent to “indexOf(u,v) !=-1"

disjoint(ul, u2, ..., uk): true if ul, u2, ..., uk are pairwise disjoint

partition(ul, u2, ..., uk): true if ul, u2, ..., uk induce a partition of {0, ...

’ n_l}

g|20



Traveling salesman

function model() {

X <- list(N) ; // order n cities {0, ..., n-1} to visit
constraint count(x) == N; // exactly n cities to visit

minimize sumli in T..N=1]( Dist[ x[i-1] ][ x[i] 1)

+ Dist[ Xx[N-1] ][ x[0]1; // minimize sum of traveled distances

TSP: Given a list of cities and their pairwise
distances, find a shortest possible tour that
visits each city exactly once.

Objective: find a permutation a,,...,a, of | =
the cities that minimizes "Iy

d(a,l,a,g) + d(ag,ag) + ...+
d(an—1,an) + d(an,ar)

FRANCE
AUSTRIA
0 50 100 km
L LD Ll
[ 50 100 mi

>>>>>>>>

where d(i, j) is the distance between 47 9Pimal 188 tour frough
. . < ermany’s 15 largest cities
citiesiand
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Why not a single line model ?

constraint TSP (graph) ;
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Real-world models do not fit in tight frameworks

Timel|A4,B,T] =

2(ax®+ay?)
_2(“x'3x+“y'3y)+\/4(“x3x+“y:8y)2 —4(ax?+ay?)(Bx’+By*-V?)

With ay, By, ay, By, functionof ABand T

+ T

constraint TSP (graph);, .

’ ’ > NS
Kinetic 1SP A g‘w\
/ ‘ > %

11|20



Performance?

TSP: real-life 200-client instance
LocalSolver 5.0 (binary) vs 6.0 (list)
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Vehicle routing

function model() {

X[1..K] <= list(N) ; // for each truck, order the clients to visit
constraint partition( x[1..K]); // each client is visited once
distances[k in 1..K] <= suml[i in 1..N=-1]( dist( x[k][i-11, x[k][i]) )

+ dist( x[K][N-T1], x[k][O] ); // traveled distance for each truck

minimize sumlk in 1..K]( distances[k] ); // minimize total traveled distance

}

Normal Count(x) N partition(x[1..K])

maximize sum(...) disjoint(x[1..K])
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CVRP benchmarks

CVRP - instances A

32 to 80 clients, 10 trucks max.
27 instances

5 minutes of running time

LS binary: almost infeasible

LS list: 1 % avg. opt. gap

CVRP - instances X100-500

100 to 500 clients, 138 trucks max.

67 instances
5 minutes of running time
LS binary: almost infeasible

LS list: 9 % avg. opt. gap
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CVRPTW benchmarks

CVRPTW - instances Solomon R100

101 to 112 clients, 19 trucks max.
13 instances

5 minutes of running time

LS binary: N/A

LS list: 3 % avg. opt. gap

CVRPTW - instances Solomon R200

201 to 208 clients, 4 trucks max.
8 instances

5 minutes of running time

LS binary: N/A

LS list: 8 % avg. opt. gap
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Beyond routing problems

Scheduling, planning, sequencing
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_/ Example tour — LecalSolv... X\+

www.lecalsolver.com/documentation/exampletour/index.html
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Flow-shop scheduling

Machine 1 B| A c |o]| E
Machine 2 B A C D E
Machine 3 B A C D | E

Since we are looking for a permutation of jobs the model is
straightforward with a single list variable



Planning
Flights to plane assignments -

A-E C->D D->B

CoB transfer ESC

C-2>A |AQB

(284

A solution is a partition of flights into K lists (one per plane)

The goal is to minimize the total transfer times



Conclusion

List Variables are a first step towards set-based modeling in
LocalSolver

This higher level of modeling yields simple and compact models
producing high quality solutions for
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