
Set-Based Modeling in LocalSolver 6.0

www.localsolver.com



2 20

Motivations
Modeling approaches for 

the Traveling Salesman Problem



3 20

Mixed-Integer Programming
With an exponential number of constraints

Minimise ∑cij xij                (1)  
i, j 
i≠j  

Conventional Formulation (C) (Dantzig, Fulkerson and Johnson (1954))  

   ∑ xij =1  
j 

j≠i   

  ∀ i∈N           (2)  

   ∑ xij =1  
  ∀ j∈N           (3)  

i 
i≠ j 

  ∑ xij ≤ |M| – 1  ∀ M⊂N such that {1}∉M,|M| ≥ 2      (4)  

i, j∈M 
i≠ j 

                                                             (the symbol ‘ ⊂ ‘ represents proper inclusion)  

  

      

This formulation has 2n + 2n - 2 constraints and n(n - 1) 0-1 variables.  

  

SINGLE COMMODITY FLOW (F1) (Gavish and Graves (1978))  

Both constraints are retained but we also introduce (continuous) variables:  

  

yij = ‘Flow’ in an arc (i,j)  i≠j  

  

and constraints:  

  
 

  

  

yij ≤ (n - 1)xij     

  

  

∀ i,j ∈N , i≠j                      (7)  

∑ y1j = n−1   
j 

j≠1 

  

              (8)  

∑ yij −∑ y jk =1  
  ∀ j∈N - {1}          (9)  

i k 
i≠ j i≠ k 

Variant with O(n²) variables and constraints

 Iterative procedure to add subtour

elimination constraints

In Orman & Williams : A survey of different integer programming formulations of the TSP



4 20

LocalSolver 5.0
A compact model based on positions

 A polynomial-size model (not an iterative procedure)

 No artificial variables and constraints

 But still based on binary decisions



5 20

Natural Modeling

As a permutation

In Kenneth R. Rosen: Permutations and Combinations.



6 20

Reference modeling

Garey & Johnson



7 20

Set-based modeling
Innovative modeling concepts 

for routing & scheduling problems



8 20

Structured decisional operator list(n)
• Order a subset of values in domain {0, …, n-1}

• Each value is unique in the list

Classical operators to interact with “list” 
• count(u): number of values selected in the list

• at(u,i) or u[i]: value at index i in the list 

• indexOf(u,v): index of value v in the list

• contains(u,v): equivalent to “indexOf(u,v) != -1”

• disjoint(u1, u2, …, uk): true if u1, u2, …, uk are pairwise disjoint 

• partition(u1, u2, …, uk): true if u1, u2, …, uk induce a partition of {0, …, n-1}

List Variables



9 20

Traveling salesman

function model() {

x <- list(N) ; // order n cities {0, ..., n-1} to visit

constraint count(x) == N; // exactly n cities to visit

minimize sum[i in 1..N-1]( Dist[ x[i-1] ][ x[i] ] ) 
+ Dist[ x[N-1] ][ x[0] ] ; // minimize sum of traveled distances

}

Could you imagine simpler model?
• Natural declarative model: straightforward to understand

• Common set-oriented concepts: easy to learn

• Still easier for people with (basic) programming skills

• Compact: linear in the size of input  highly scalable (1 million nodes)



10 20

Why not a single line model ?



11 20

Real–world models do not fit in tight frameworks
Time 𝐴, 𝐵, 𝑇 =

2 𝛼𝑥
2+𝛼𝑦

2

−2 𝛼𝑥𝛽𝑥+𝛼𝑦𝛽𝑦 + 4 𝛼𝑥𝛽𝑥+𝛼𝑦𝛽𝑦
2
−4 𝛼𝑥2+𝛼𝑦2 𝛽𝑥

2+𝛽𝑦
2−𝑉²

+ 𝑇

With 𝛼𝑥 , 𝛽𝑥 , 𝛼𝑦 , 𝛽𝑦 function of A,B and T

Kinetic TSP

?



12 20

Performance?

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758

TSP: real-life 200-client instance 
LocalSolver 5.0 (binary) vs 6.0 (list)

Best known solution 

LS 6.0

LS 5.0



13 20

Vehicle routing

function model() {

x[1..K] <- list(N) ; // for each truck, order the clients to visit

constraint partition( x[1..K] ); // each client is visited once

distances[k in 1..K] <- sum[i in 1..N-1]( dist( x[k][i-1], x[k][i]) ) 
+ dist( x[k][N-1], x[k][0] ); // traveled distance for each truck

minimize sum[k in 1..K]( distances[k] ); // minimize total traveled distance

}

TSP VRP

Normal Count(x)=N partition(x[1..K])

Prize-collecting maximize sum(…) disjoint(x[1..K])



14 20

CVRP benchmarks

CVRP - instances A
• 32 to 80 clients, 10 trucks max.

• 27 instances 

• 5 minutes of running time

• LS binary: almost infeasible

• LS list: 1 % avg. opt. gap

CVRP - instances X100-500
• 100 to 500 clients, 138 trucks max.

• 67 instances 

• 5 minutes of running time

• LS binary: almost infeasible

• LS list: 9 % avg. opt. gap



15 20

CVRPTW benchmarks

CVRPTW - instances Solomon R100
• 101 to 112 clients, 19 trucks max.

• 13 instances 

• 5 minutes of running time

• LS binary: N/A

• LS list: 3 % avg. opt. gap

CVRPTW - instances Solomon R200
• 201 to 208 clients, 4 trucks max.

• 8 instances 

• 5 minutes of running time

• LS binary: N/A

• LS list: 8 % avg. opt. gap



16 20

Beyond routing problems
Scheduling, planning, sequencing





18 20

Flow-shop scheduling

Since we are looking for a permutation of jobs the model is 
straightforward with a single list variable

AB C D E

AB C D E

B A C D E

Machine 1

Machine 2

Machine 3



19 20

Planning
Flights to plane assignments

AE CD DB

CB EC

CA AB

transfer

A solution is a partition of flights into K lists (one per plane)

The goal is to minimize the total transfer times



20 20

Conclusion
List Variables are a first step towards set-based modeling in 

LocalSolver

This higher level of modeling yields simple and compact models 
producing high quality solutions for

Routing Scheduling Planning

AB C D E

AB C D E

B A C D E

RCPSP Any other 

sequencing 

problem


