## Ordonnancement avec exclusion mutuelle par un graphe d'intervalles ou d'une classe apparentée : complexité et algorithmes

Frédéric Gardi

- 14 Juin 2005 *-*
- Faculté des Sciences de Luminy -





### Plan de l'exposé

#### 1. Introduction

- 2. Exclusion mutuelle par un graphe d'intervalles
- 3. Exclusion mutuelle par un graphe d'arcs ou de tolérances
- 4. Une condition suffisante pour l'optimalité
- 5. Sur certains problèmes de partition relatifs aux graphes d'intervalles
- 6. Conclusion et perspectives



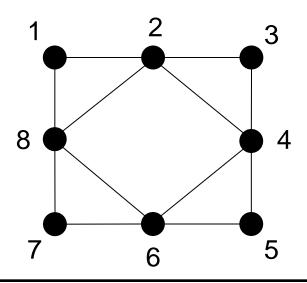


### Présentation du problème

#### Problème fondamental en théorie de l'ordonnancement :

ordonnancer n tâches sur k processeurs en le minimum de temps, certaines tâches ne pouvant être exécutées en parallèle (partage des ressources)

conflits entre les tâches praphe d'exclusion mutuelle





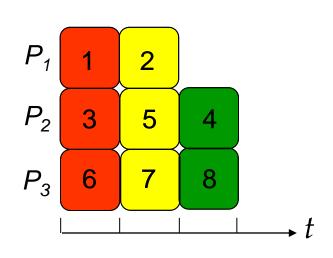


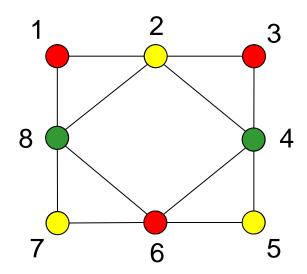
## Présentation du problème

lorsque toutes les tâches ont le même temps d'exécution



ordonnancement = coloration du graphe tel que chaque couleur n'apparaisse pas plus de k fois









## Présentation du problème

#### <u>Ordonnancement avec Exclusion Mutuelle (ORDO):</u>

Entrée : un graphe G = (V, E) et un entier positif k ;

Sortie : une coloration minimum de G où chaque couleur apparaît au plus k fois.

[Baker et Coffman 1996]

Problème de la coloration minimum déjà NP-difficile

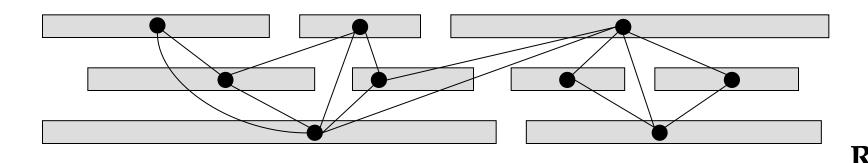
restriction aux classes de graphes colorables en temps polynomial (ex : graphes parfaits)





### Graphes d'intervalles

#### Représentation:



Domaines d'applications [Roberts 1976, Golumbic 1980] :

- génétique
- ordonnancement
- psychologie
- archéologie





Problème de planification de personnel traité par la société PROLOGIA - Groupe Air Liquide :

*n* tâches journalières à affecter à des employés, chacune possédant une date de début et une date de fin

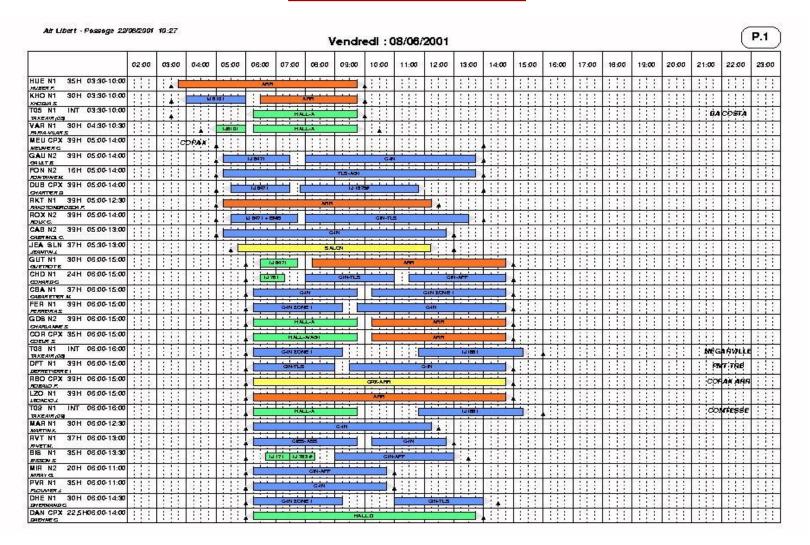
But: combien d'employés mobiliser?

#### **Contraintes:**

- les tâches affectées à un employé ne se chevauchent pas
- pas plus de k tâches par employé ( $k \le 5$  fixé)
- problème Ordo pour les graphes d'intervalles



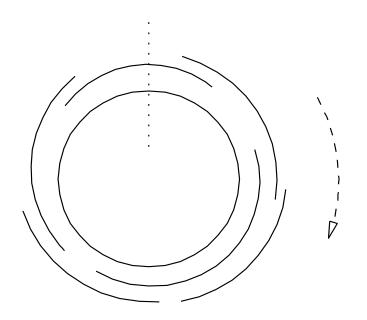


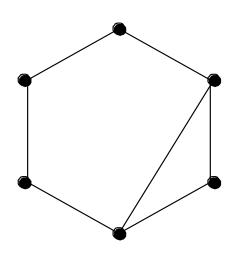






#### Planning cyclique:



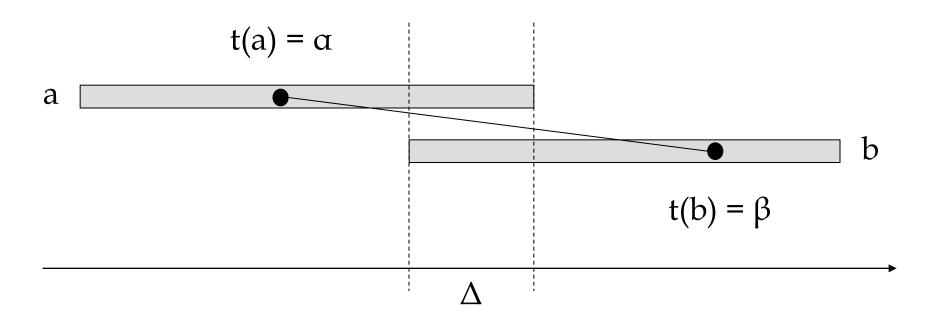


problème Ordo pour les graphes d'arcs circulaires





#### Tolérance aux chevauchements:



problème Ordo pour les graphes de tolérances





# État de l'art

#### Théorème [Bodlaender et Jansen 1995]:

Le problème Ordo est NP-difficile pour les graphes d'intervalles, même lorsque k est un paramètre fixé supérieur ou égal à quatre.

#### Cas polynomiaux:

- graphes scindés [Lonc 1991]
- forêts [Baker et Coffman 1996]
- compléments de graphes fortement triangulés [Dalhaus et Karpinski 1998]
- graphes de largeur-arbre bornée [Bodlander et Fomin 2004]





## <u>Objectifs</u>

Étudier de façon détaillée la complexité du problème Ordo pour les classes de graphes apparentés aux graphes intervalles :

- exhiber des cas polynomiaux
- concevoir des algorithmes simples et efficaces

Établir une cartographie complète de la complexité du problème d'ordonnancement avec exclusion mutuelle





## Plan de l'exposé

- 1. Introduction
- 2. Exclusion mutuelle par un graphe d'intervalles
- 3. Exclusion mutuelle par un graphe d'arcs ou de tolérances
- 4. Une condition suffisante pour l'optimalité
- 5. Sur certains problèmes de partition relatifs aux graphes d'intervalles
- 6. Conclusion et perspectives





### <u>Un nouvel algorithme pour k = 2</u>

#### Théorème [Andrews et al. 2000]:

Le problème Ordo peut être résolu en O(n log n) pour les graphes d'intervalles lorsque k = 2.

#### Aspects négatifs :

- algorithme récursif complexe
- preuve de validité longue et fastidieuse

#### Nos travaux:

- algorithme simple en O(n) si extrémités triées
- preuve de validité directe
- nouveaux algorithmes pour problèmes relatifs





## <u>Cas polynomiaux</u>

#### Théorème:

Le problème Ordo peut être résolu en temps et espace linéaire pour :

- les graphes d'intervalles propres;
- les graphes à seuil et les graphes scindés convexes.

#### **Proposition:**

Le problème Ordo pour les graphes scindés est aussi difficile que le problème du couplage maximum dans un graphe biparti.





### Plan de l'exposé

- 1. Introduction
- 2. Exclusion mutuelle par un graphe d'intervalles
- 3. Exclusion mutuelle par un graphe d'arcs ou de tolérances
- 4. Une condition suffisante pour l'optimalité
- 5. Sur certains problèmes de partition relatifs aux graphes d'intervalles
- 6. Conclusion et perspectives





### Le cas des graphes d'arcs propres

#### Théorème:

Le problème Ordo peut être résolu en temps  $O(n^2)$  et espace linéaire pour les graphes d'arcs propres.

Preuve algorithmique: échanges bichromatiques

#### Théorème:

Le problème Ordo peut être résolu en temps et espace linéaire pour les graphes d'arcs propres, lorsque k = 2.

Preuve algorithmique: union de couplages





### Le cas des graphes de tolérances bornées

#### Théorème:

Lorsque k est un paramètre fixé supérieur ou égal à trois, le problème Ordo reste NP-difficile pour les graphes de tolérances bornées, même si :

- le plus grand stable dans le graphe est de taille k + 1;
- tout cycle de longueur supérieure ou égale à cinq possède deux cordes.

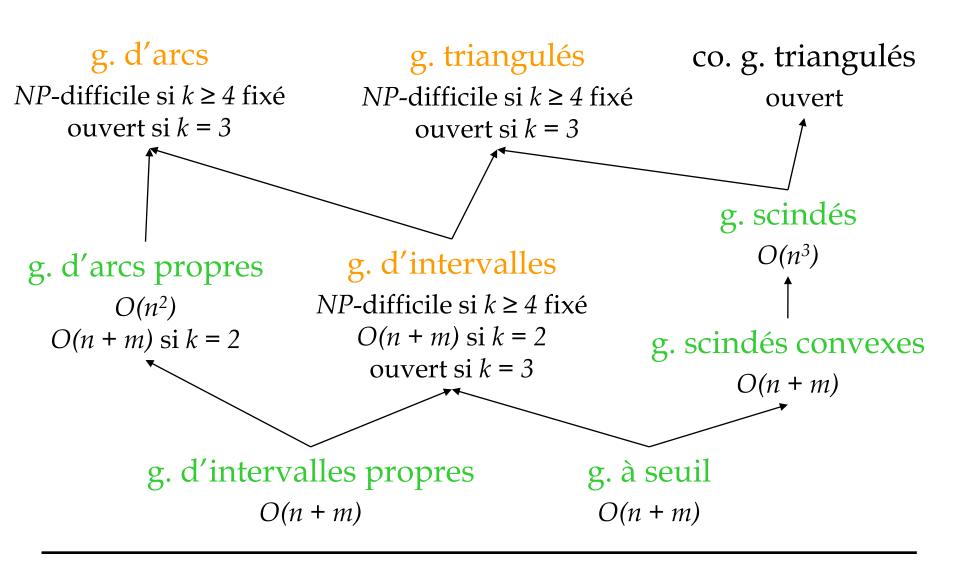
Réduction: Couplage Numérique 3-D

[Bodlaender et Jansen 1995]





# <u>Synthèse</u>







# <u>Synthèse</u>

#### g. de Meyniel

*NP*-difficile si  $k \ge 3$  fixé

g. faibl. triangulés

*NP*-difficile si  $k \ge 3$  fixé

### co. g. de comparabilité

*NP*-difficile si  $k \ge 3$  fixé

#### g. triangulés

*NP*-difficile si  $k \ge 4$  fixé ouvert si k = 3

g. de tolérances bornées

*NP*-difficile si  $k \ge 3$  fixé

#### g. d'intervalles

NP-difficile si  $k \ge 4$  fixé O(n + m) si k = 2ouvert si k = 3





### Plan de l'exposé

- 1. Introduction
- 2. Exclusion mutuelle par un graphe d'intervalles
- 3. Exclusion mutuelle par un graphe d'arcs ou de tolérances
- 4. Une condition suffisante pour l'optimalité
- 5. Sur certains problèmes de partition relatifs aux graphes d'intervalles
- 6. Conclusion et perspectives





## <u>Une condition suffisante pour l'optimalité</u>

Condition : le graphe *G* des conflits admet une coloration où chaque couleur apparaît au moins *k* fois.

Propriété de redécoupage : si G satisfait la condition, alors celui-ci admet une partition optimale en  $\lceil n/k \rceil$  stables de taille au plus k.

#### Intérêts:

- condition satisfaite en pratique
- conception d'algorithmes d'approximation

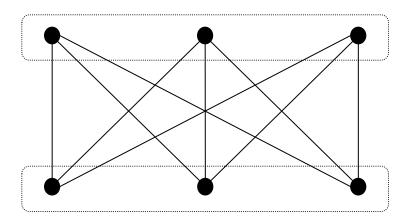




### <u>Une condition suffisante pour l'optimalité</u>

#### **Contre-exemple:**

Le graphe biparti complet  $K_{k+1,k+1}$  ne vérifie pas la propriété de redécoupage, quel que soit  $k \ge 2$ .



Le graphe biparti complet  $K_{3,3}$ 





## Une condition suffisante pour l'optimalité

#### Théorème:

La propriété de redécoupage est vérifiée par :

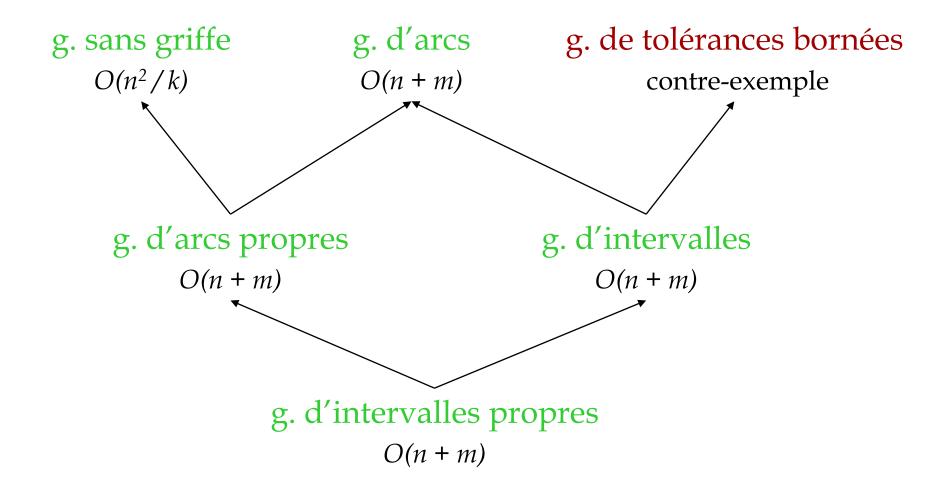
- les graphes sans griffe;
- les graphes d'intervalles et d'arcs;
- les graphes de tolérances propres, pour k = 2;
- les graphes scindés et les forêts;
- les graphes triangulés, pour  $k \le 4$ .

+ algorithmes efficaces pour calculer un redécoupage, étant donnée en entrée une coloration satisfaisant la condition.





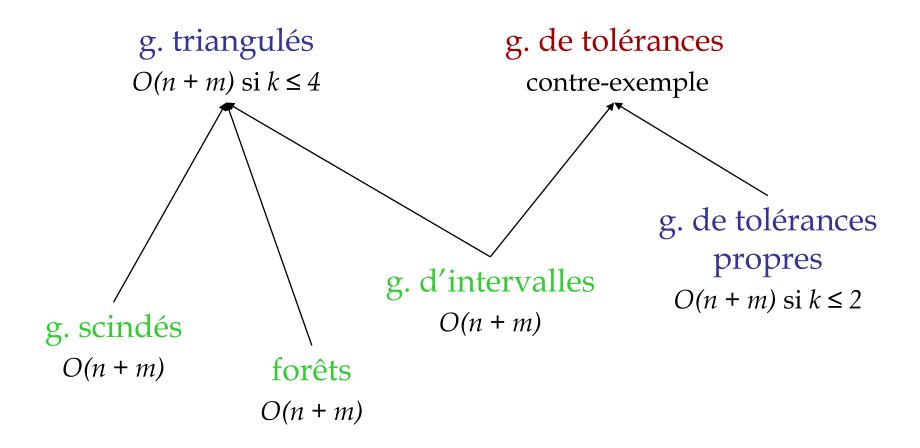
# <u>Synthèse</u>







## <u>Synthèse</u>







### Plan de l'exposé

- 1. Introduction
- 2. Exclusion mutuelle par un graphe d'intervalles
- 3. Exclusion mutuelle par un graphe d'arcs ou de tolérances
- 4. Une condition suffisante pour l'optimalité
- 5. Sur certains problèmes de partition relatifs aux graphes d'intervalles
- 6. Conclusion et perspectives





## <u>Partition en sous-graphes d'intervalles</u> <u>propres</u>

#### Théorème:

Tout graphe d'intervalles admet une partition en  $\lceil \log_3 n \rceil$  sous-graphes d'intervalles propres. De plus, cette borne est atteinte de façon asymptotique pour une famille infinie de graphes d'intervalles.

#### Preuve constructive:

Algorithme récursif en temps  $O(n \log n + m)$  et espace O(n) calculant la partition.





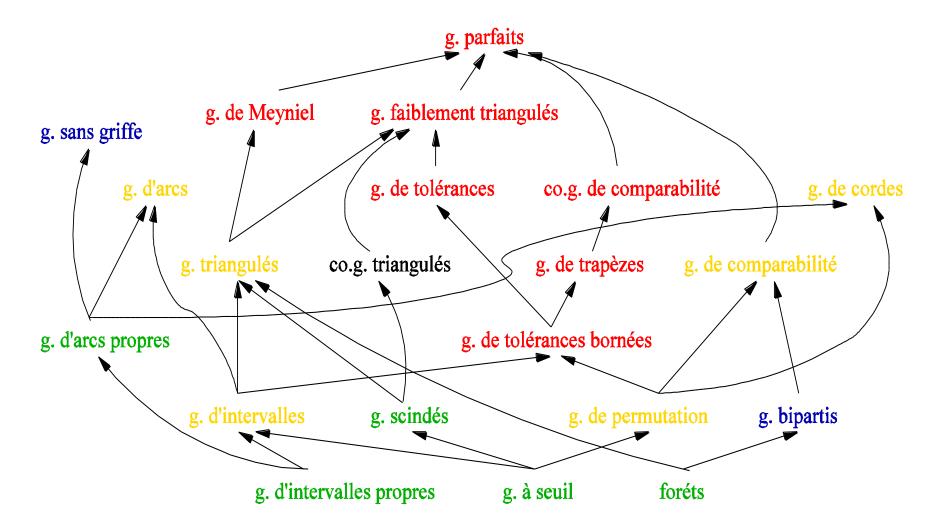
### Plan de l'exposé

- 1. Introduction
- 2. Exclusion mutuelle par un graphe d'intervalles
- 3. Exclusion mutuelle par un graphe d'arcs ou de tolérances
- 4. Une condition suffisante pour l'optimalité
- 5. Sur certains problèmes de partition relatifs aux graphes d'intervalles
- 6. Conclusion et perspectives





### **Conclusion**







## <u>Perspectives</u>

#### Poursuite du travail de classification :

- graphes d'intervalles lorsque k = 3
- graphes de permutation lorsque k = 3, 4, 5
- compléments de graphes triangulés

Poursuite de l'étude menée sur la propriété de redécoupage :

- graphe de tolérances propres
- graphes triangulés et extensions

Autres modèles issus de la planification de personnel :

- somme des durées des tâches ≤ D
- fin de la dernière tâche début de la première ≤ *D*



